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Abstract

The main objective of this thesis is the accuracy improvement of parallel robots.
Accuracy can be improved either by precise manufacturing and assembly or by
calibration of each individual robot using a kinematic model which takes geometric
deviations into account. The latter has the advantage of leading to low cost solutions
but requires sophisticated modeling of the robot's structure which is usually

considerably more complex than the derivation of its nominal model.

To substantiate the theoretical tools proposed in this thesis two examples of parallel
structures are chosen. One of them is the Delta robot with three translational degrees of
freedom whereas the second example is a novel structure called Argos having three
rotational degrees of freedom. For experimental verification a mock-up was built for
each of the two structures.

Four calibration steps, modeling, measurement, identification, and implementation are
investigated. Investigations were restricted to static errors due to geometric deviations

assuming rigid bodies.

First a formula is proposed which allows to calculate the number of independent
kinematic parameters required for a complete model of a parallel structure. Then a
systematic parameterization is introduced and applied to derive four calibration models,
two for each example.

Two measurement devices are described which were built to determine the position and
orientation (pose) of the end-effectors of the two robots. For the Delta robot two
additional set-ups using no external (additional) measurement device are proposed.

For parameter identification different methods were tested by simulation. Calibration
based on the implicit model is proposed as a standard method to calibrate parallel
robots. Another calibration method is introduced, referred to as semiparametric
calibration, which leads to low computational effort.

Fast solutions of the direct and inverse problems had to be found. For the first time all
the solutions of the direct problem for the Delta robot were found by means of an
algorithm introduced by Husty. In addition a fast numeric algorithm for the Delta's

direct problem is proposed.

The main contribution of this thesis is the experimental verification of calibration
methods to improve the accuracy of parallel robots. Using these calibration methods for
the two robots, ARGOS and DELTA, between a three- to a twelve-fold improvement of
accuracy was achieved and experimentally verified.
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Résumé

Le but de cette thése est 'augmentation de la précision absolue des robots paralléles. La
précision peut étre augmentée soit par une fabrication et un montage trés soigneux, soit
par calibration individuelle de chaque robot en utilisant un modeéle cinématique plus
complet que le modele nominal du robot. La recherche se concentre sur le cas statique
en tenant compte seulement des erreurs dues a la structure géométrique elle-méme,
celle-ci €tant modélisée a 'aide de corps rigides.

Pour vérifier les outils théoriques proposés dans cette thése deux exemples de structures
paralleles ont été choisis. I s'agit du robot Delta avec trois degrés de liberté en
translation et d'une nouvelle structure, nommée Argos, congue dans le cadre de ce
travail; cette derniere comporte trois degrés de liberté en orientation. Une maquette de
chaque structure a été construite. Elles montrent que les concepts de construction bon
marchés proposés permettent d'obtenir une précision élevée. L'augmentation de la
précision par calibration est ensuite trait€e en quatre étapes: modélisation, mesure,
identification et implémentation.

Une formule qui permet de calculer le nombre de parameétres indépendants pour un
modele complet d'une structure parallele est proposée. Une approche systématique pour
la paramétrisation est introduite et utilisée avec succés pour développer quatre modéles
de calibrage, deux pour chaque exemple.

Deux systemes de mesures ont été construits pour déterminer la position et I'orientation
de l'organe terminal des deux robots. Pour le robot Delta deux arrangements
supplémentaires n'ayant pas besoin d'un systéme de mesure externe sont proposés.

Différentes méthodes d'identification ont été simulées. La calibration basée sur le
modele implicite a été proposée comme méthode standard pour calibrer des robots
paralléles. Une autre méthode intéressante est la calibration semiparamétrique qui

diminue considérablement la complexité du calcul.

Pour l'implémentation des quatre modeles, il s'agit de trouver des solutions rapides pour
les problémes directs et inverses. Grice a un algorithme proposé par Husty toutes les
solutions du probléme direct pour le robot Delta ont été trouvées. Pour le méme
probléme, un algorithme numérique minimisant le temps de calcul a été développé.

La contribution principale de cette thése est la vérification expérimentale des outils
théoriques développés dans le cadre de ce travail. Les résultats expérimentaux pour
I'ARGOS et le DELTA montrent une amélioration de la précision absolue entre un
facteur trois et douze.
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Notation

The notation used in this work is based on the textbook of Craig [89]:

1.

Variables written in bold face represent vectors, matrices or tensors. Normal face
variables are scalars. Because of extensive matrix calculation the dimension of
vectors, matrices and tensors are indicated by "overstriking" the bold face variables
once, twice or three times. Examples: a is a scalar, @ is a column vector if not
specified otherwise, A is a matrix, and A is a three dimensional tensor. [a] is the
Euclidean norm of vector a and ‘KI is the determinant of matrix A . An "overstrike"

caret () indicates a measured value subjected to measurement noise.

. Leading subscripts and superscripts indicate in which coordinate system a quantity is

written. Examples: “P represents a position vector written in frame {A}, and ’;ﬁ 1s
a rotation matrix which consists of the unit vectors of frame {B} written in frame
{A}, relating vectors expressed in {B} to vectors expressed in {A}. {C} = {D}
indicates two frames having the same origin, which means that the transformation
between these two frames is reduced to a pure rotation. Rot3, Rot4, Trans4, Sw and
Sh are matrix functions defined in annex B.

. Trailing superscripts indicate the inverse or transpose of a matrix. Since vectors are

generally defined as column vectors a transposed vector is a row vector. Exceptions
are the trailing superscripts n, o, i and *, which indicates nominal, accurate,
identified and starting sets of parameters.

Trailing subscripts are not subjected to any strict convention but may indicate a
vector component (e.g. X,y, or z), the number of the joint-link train (kinematic
chain), the number for a measured point etc.

5. The notation for trigonometric functions may be shortened to: cos(at) = c(a) = co

The different kinematic models are distinguished by the number of kinematic

parameters which they contained. Example: Model 16 is a model containing 16

kinematic parameters.

Each of the seven chapter of this work is divided into sections, which are further

divided into paragraphs. Therefore, the identifier 2.3 indicates the third section of

chapter two, whereas the identifier 2.3.1 points to the first paragraph in the third section

of chapter two.
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1. Introduction

1.1 Preliminaries and definitions

1.1.1 Industrial robots

According to ISO/TR 8373 an industrial robot is a manipulator with several degrees of
freedom, which is automatically controlled, reprogrammable, and has the ability to
fulfill different tasks in industrial automation. Its mechanical part consists of a base, an
intermediate structure and an end-effector connected with joints. Variable parameters
of a joint are called joint coordinates which together form the joint space. A set of joint
coordinates describes a configuration of the robot. A kinematic! model may be
implemented into the robot controller linking the joint coordinates to the world
coordinates used to describe the location of the end-effector within the world space?.

1.1.2 Parallel robots

Most of today's industrial robots have a single chain of bodies as intermediate structure
quite similar the human arm. These robots belong to the class of serial robots. If a
heavy box has to be moved, humans tend to use both arms. This concept of several
chains working in-parallel was also applied in robotics [Pollard 42, Hunt 83] leading to

IKinematics is the science of motion (position, velocity, acceleration) not taking into consideration the
forces and moments causing these motions. This work is limited to static considerations only, sometimes
referred to as position kinematics or geometry. However, the more general term "kinematics" was
adopted in order to indicate the relationship between geometric error analysis and velocity kinematics,

shown by the appearance of Jacobian matrices, which are varying linear transformation matrices.

2This terminology is somewhat field dependent. Authors working in the field of control theory may use
"operational space" [Guglielmetti 94], in general kinematics the term "Cartesian space” can be found
[Craig 89], whereas in automation the space is sometimes referred to as "task space”. However in the
field of manipulator calibration the term "world space” is used by different authors [Whitney 86,

Shamma 87, Mooring 91].
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another class of so called parallel robots. Examples for parallel robots are given in
section 1.6. Since several kinematic chains are involved, a parallel robot contains closed
loops in its topology. It is inherent to closed loops, that some of the joint coordinates

are dependent.

The analogy of a person moving a heavy box with both arms immediately shows the
presence of dependent joint coordinates: In order not to drop the box during motion the
relative distance between the hands must be kept constant. The movement of the arms
is therefore constrained by the closure condition to maintain the loop. Thus, the

movements of both arms are dependent on each other!.

In literature various definitions may be found for parallel robots [Merlet 90, Clavel 91,
Merlet 93a]. The following definition is employed for this thesis:

A robot with dependent joint coordinates caused by one
or several closed loops in its topology belongs to the

class of parallel robots.

1.1.3 Static pose error

A rigid body in space has six degrees of freedom, three in position and three in
orientation. The combination of position and orientation is referred to as pose [Mooring
91]. The pose of the robot's end-effector is subjected to a szatic error after all transient
parts (over- and undershoot, vibrations) have vanished. How fast the transient parts will
vanish depend of the chosen type of trajectory and of the eigenfrequency of the
mechanical structure [Demaurex 79].

According to ISO 9283 two criteria of performance, repeatability and accuracy, specify
the static pose error of robots [Van Brussel 90, Engel 91, Mooring 91]. Slightly varying
criteria are defined in VDI 2861 [VDI 88].

1The analogy between a manipulator and an arm doesn't hold when examined in detail:
a) One arm taken as analagon for a serial robot contains already closed loops (bone, agonist, antagonist).
b) The analogy is poor for robots containing prismatic joints such as Cartesian robots.

¢) In contrast to non-redundant parallel robots a person moving a box with both arms is redundant in
actuation (as two cooperating robots).
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Repeatability is the ability of a robot to return to a
previous pose.

Accuracy is the difference between the desired and
actual pose.

Repeatability is influenced by back lash in the gear box, stick-slip, hysteresis, and so
on, which are stochasticly changing events . Accuracy is influenced by the difference
between the real structure and the kinematic model used by the robot controller, which
are systematically occurring events. The upper limit of accuracy is given by the
repeatability as summarized in the figure below:

desired pose

Fig. 1.1: Relation between repeatability and accuracy

Repeatability of a parallel robot was measured by Stevens [95] on a direct drive Delta
robot [Codourey 91], yielded 0.2 millimeters in position and 0.1 degrees in orientation.
Masory [94] has measured the repeatability of an other parallel robot, the Stewart
Platform [Stewart 65], to be 1 millimeter in position and 0.2 degrees in orientation.

Repeatability is mainly improved by eliminating the source of the random errors by
changing the mechanical concepts such as replacing a sliding by a rolling contact in
order to avoid stick-slip or by preloading the gear box to avoid backlash.

1.1.4 Methods for precise automation tasks

Five different methods may be appropriate for precise automation tasks. The first two
methods 1) and 2) omit the use of a kinematic model in the controller and are therefore
only dependent on the robot's repeatability. Method 4) and 5) aim at improving the
overall accuracy of the robot whereas method 3) is in between:

1) The classical method of robot programming is “teach-in"”. Thereby an operator
guides the robot manually through a set of key configurations of the task. The joint
coordinates of these configurations are stored in the robot controller. "Teach-in" has
to be done on the robot itself. Thus, drawbacks of this method are that the robot's
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2)

3

4)

5)

productivity is blocked during "teach-in" time and each robot must be taught
individually (programs are not interchangeable).

A second method uses end-effector feedback [Heeren 92] which requires a sensor
measuring the pose of the end-effector. However, such sensors measuring in real-
time the pose of a body in space with sufficient precision are not yet available on
the market. Fast parallel robots such as the Delta robot causes additional problem
for real-time end-effector feedback due to high accelerations of up to 40 g
[Codourey 91].

Splitting the movement of the robot into a rough motion moving the end-effector
close to the target and a fine motion moving the end-effector into target position is
another method. For fine motion a passive remote center compliance (RCC) [Asada
88] or an additional active mechanical device dedicated to fine motions [Hollis 91]
can be used. Other approaches are the local use of a vision system [Sakakibara 89],
contact force sensing [Vischer 92] and high speed random search [Badano 93]. All
these methods are task dependent, which can be a disadvantage.

A fourth method consists of adapting the robot to the kinematic model used by the
controller. Tolerances of the mechanical parts, which is believed to be one of the
major error sources concerning accuracy [Mooring 91, Schroer 93] are therefore
specified before manufacturing. Such an approach was chosen by Zobel [94] to
allocate tolerances to a Delta robot [Clavel 85]. However, smaller tolerances
generally increase manufacturing costs. In chapter 2 some low-cost concepts are
proposed to reduce tolerances.

A last method is to adapt the kinematic model to each robot individually by
calibration after manufacturing. Deviations of each mechanical part are evaluated
and stored in the controller. This process is the main subject of this thesis and
treated in chapters 3 to 6.

The last four methods allows to program a robot off-line, for example by simulation in
a CAD/CIM environment and download of the generated code to the robot. Because the
robot itself is not needed for off-line programming, the production is not affected. This

is an advantage compared to the "teach-in" method.
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1.1.5 Direct, inverse and calibration problem

For a given set of joint coordinates, the direct problem corresponds to solving the
kinematic model for the corresponding set of world coordinates (fig. 1.2). This is
sometimes also referred to as direct model. For parallel robots it is generally difficult to
solve the direct problem, whereas for serial robots it is easy and straight forward to
establish.

For a given set of world coordinates, the inverse problem corresponds to solving the
kinematic model for the corresponding set of joint coordinates (fig. 1.2), which is
sometimes also referred to as inverse model. For parallel robots the inverse problem is
generally easier to solve than the direct problem. For serial robots the inverse problem
1s always more difficult to solve than the direct one.

For given sets of joint and world coordinates, the kinematic calibration problem
corresponds to solving the kinematic model for the corresponding set of kinematic
parameters (fig. 1.2), which is sometimes also referred to as identification . For parallel
as well as for serial robots this is a difficult task due to the non-linear and

overdetermined system to solve.

Joint kinematic | .| Solve the direct p World
coordinates model problem coordinates

World kinematic _’Solve the inverse Joint
coordinates model problem > coordinates

coordinates model parameters

Joint and world kinematic _.l Identification > Kinematic

Fig. 1.2: The direct, inverse and calibration problem

1.1.6 Kinematic calibration of robots

Kinematic calibration is limited to errors of the mechanical parts only. Calibration is a
modification of the software and won't affect any hardware of the robot. Figure 1.3
shows a general flowchart of forward calibration [Whitney 86], which is well suited for
serial robots.
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noise
‘ achieved world
individual, coordinates measurement
real robot static pose
error
Joipt ‘
coordinates desired world
kinematic olve the direct coordinates
model problem
individual set
L.E__of arameters | dentification je—————I
Fig. 1.3: Forward calibration process well adapted for serial robots.

However, as will be shown later in this work, forward calibration is not well suited for
calibration of parallel robots because the direct problem has to be solved. Using
implicit calibration is therefore proposed (fig. 1.4), where the solution of the direct

problem is not required:

noise

achieved world

individual,f coordinates measurement
real robot
Joint
coordinates .
kinematic residuals
model

individual set
of parameters Identification |(q———

Fig. 1.4 Implicit calibration process well suited for parallel robots

According to Mooring [91] a calibration process consists of four different steps (fig.
1.5): modeling, measurement, identification and implementation. "Modeling" provides a
suitable kinematic model for calibration. "Measurement” acquires a set of input data for
the "identification”, where a better fitting set of parameters is calculated. "Imple-
mentation” deals with the resolution of the direct and inverse problem of the calibrated

model.
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Modeling Measurement Identification | |Implementation
(chapter 3) (chapter 4) (chapter 5) (chapter 6)

Fig. 1.5: The four steps of calibration

1.1.7 Conclusions

The main difference between serial and parallel robots is the presence of dependent
Jjoint coordinates, which makes the direct problem for parallel robots much harder to
solve than for serial robots. This difference is the reason that standard calibration
techniques developed for serial robots get very cumbersome or even fail for parallel
robots. Techniques for the calibration of parallel robots have therefore to be adapted or
newly developed.

1.2 Motivation and objectives

Most of today's industrial robots are still programmed by "teach-in". Changing this
method for the less time consuming and cheaper off-line programming (paragraph
1.1.4) is of great interest. Unfortunately, simple downloading of the generated code to
the real robot is not possible since the kinematic model doesn't reflect precisely the
behavior of the real robot. The amount of deviation depends on the manufacturing
tolerances of each individual robot, which has an influence on the static pose error. This
explains the need for minimizing the static pose error, or in other words for improving
the accuracy. Depending on the task, off-line programming is unavoidable. The
programming of a robot for brain surgery [Flury 94] for instance has to be done off-line
because the robot will be guided using information from a tomograph.

Paralle]l robots are generally regarded as being highly accurate due to the non-
cumulative joints errors [Hunt 83, LeeK 88, Nguyen 91, Wang 92, Pernette 96]. First
applications of parallel robots, where high precision and high stiffness is required,
support this assumption. An example is a prototype built at the European Synchrotron
Radiation Facility (ESRF) capable to place a load of 500 kilograms with an accuracy of
1 micrometer in a cubic workspace of 4 centimeters side length [Merlet 93a]. In
applications, where high accuracy, high stiffness or high speed is required, parallel
structures replace serial topologies more and more. Examples are found in the machine
tool industry [Schulz 94a, Schulz 94b, Geodetics 94, Honegger 96, Wiegand 96], optics
[Zeiss 94] and microrobotics [Magnani 95, Pernette 96). In the future parallel robots
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may also be applied in metrology for high speed quality control [Schmidt 91, Clavel
91] or in automation for surface mounted device (SMD) technology.

The proposition to use parallel structures as milling machines (fig. 1.6) goes back to a
remark of G.H. Meier and J. Tindale to an article of Stewart [65].

Fig. 1.6: Use of a Stewart Platform as a milling machine as proposed by Tindale

The theory for parallel topologies being more complicated and therefore less developed
was one of the reasons why Meier's and Tindale's idea couldn't be realized successfully

for more than thirty years.

This work aims at contributing to the theoretical as well as to the practical knowledge

of accuracy improvement of parallel robots:

Minimization of the static pose error and thus improvement of
the accuracy of parallel robots taking into account geometric
deviations only is the principal goal of this work.

In this work only geometric deviations are considered which may be justified by the
work of Judd [90], who found that 95% of the static pose errors are caused by
geometric deviations. The need for the accuracy improvement of parallel robots is also
demonstrated in figure 1.7, where a prototype of a parallel Delta robot 580 [Clavel 91]
follows a square with a spring loaded pen on different heights in its workspace.
Deviations of several millimeters are observed.



Introduction 9

Fig. 1.7: Pose error of a prototype of a parallel Delta robot 580

1.3 State of the art

1.3.1 Introduction

As opposed to serial robots, calibration methods for paralle] robots are not covered well
in Literature. For the calibration of serial robots some standardized methods exist.
Books [Kim 87, Mooring 91, Schréer 93, Bernhardt 93], software packages [Craig 92,
Schroer 94], various good reviews, excellent work [Sugimoto 85, Hayati 85, Whitney
86, Roth 87, Everett 87, Veitschegger 88, Hollerbach 89, Khalil 89, Spur 89, Judd 90,
Kozakiewicz 90, Renders 91] and PhD-thesis [Payannet 85, Stone 87, Veitschegger 87,
Tanner 90, Flury 94] are available.

Much less work! has been done on calibration of parallel robots. No standardized
calibration method has been proposed yet.

1 About a dozen of papers of ten different groups
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1.3.2 Simulations

Everett [88a, 89] and Lin [89] proposed a calibration procedure for different planar and
spatial single-loop structure. They suggested to model closed-loops with two types of
equations. The first type is a sequence of multiplications of homogenous matrices
describing the open loop structure (serial) between base and end-effector, whereas the
second type of equations contains the closure or constraint equations for the closed-
loops. The constraint equations were added to the open loop equations by means of
Lagrange multipliers. The resulting unconstrained optimization problem was solved by
the Gauss-Newton method. With an assumed measurement noise of 25 micrometers and
10.3 arcseconds and a maximum deviation of the initial guess of 10% their calibration
procedure could successfully identify the 24 parameters of a 2R2SR1-single loop. The
introduced Lagrange multipliers increase the number of variables to identify, which

may be a disadvantage.

Toyama [89] proposed to use screw algebra for calibration of the Stewart platform.
They introduced dual-quaternions in order to represent three screw operators required
to describe the six kinematic parameters of an extended Denavit-Hartenberg
parameterization [Denavit 55]. An inverse calibration was performed which is
decoupled for each joint-link train using the steepest descent method to identify 36

parameters.

Zhuang [91] proposed for the calibration of a Stewart platform not to move the leg
which parameters should be identified in order to collect special sets of error equations.
The difference between two error equations of the same set neither contains the
transducer offset nor the transducer readings (leg length). Their method allows to
cascade the calibration problem into the identification of 36 parameters (attachment
points of the S-joints) followed by the identification of the remaining 6 transducer
offsets. Such a kind of calibration, which bases on manipulations of the error
equations, is referred to as cascaded calibration. For simulation different levels of
uniformly distributed measurement noise of 200 - 1000 micrometers and 7.2 - 36
arcseconds were assumed. Sets of 7 - 16 randomly distributed measurement points were

IR indicates a revolute joint and S a spherical joint. The loop is built of five rigid bodies including the
base. It has two degrees of freedom not counting the isolated degree of freedom of the ballbar (2S). The

notation is further explained in paragraph 1.6.3.
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chosen for each leg. The Gauss-Newton method based on singular value decomposition
(SVD) was used to solve the non-linear optimization problem, which converged
typically within three iterations. They concluded that the error of the orientation
measurement has a strong influence on the quality of the identified parameters. Twelve
measurement points seem to be enough to identify six parameters. The approach of
Geng [94] is closely related to this work. It investigates the number of legs to be keep at
a fixed length during data acquisition. Innocenti [95] developed a polynomial solution
for the parameter identification problem outlined by Zhuang. In order to obtain a
determined system of equations Innocenti used eight measurement points for seven
parameters. In Zhuang [96] self-calibration of parallel robots is proposed. They
simulated the identification of 30 kinematic parameters required to describe a Stewart
Platform with no arbitrarily chosen base and moving frame. To get information for
calibration, they added three and six supplementary joint transducers, respectively.
Measurement noise of 100 - 500 micrometers and 21 - 103 arcseconds was assumed.
Using the Levenberg-Marquardt algorithm an accuracy improvement of at least one
magnitude could be gained within three iterations. However, redundant joint sensing
must be provided, which may be expensive to install on each individual robot. A further
disadvantage is that the base frame as well as the moving frame cannot be located
arbitrarily. The origin of the base frame is in the center of one of the six universal joints
at the proximal end of the legs. The problem of locating a work piece relative to this
physically inaccessible base frame is obvious.

Ananthanarayanan [92] proposed to use the bisection method [Press 89] to find the root
of a nonlinear, determined! system of equations, which he used to describe the
parameter identification problem. However, no results are given for the introduced
planar single-loop structure.

Wampler [92] pointed out that the measurement step in calibration is not restricted to
measurements of the end-effector's pose but may also be performed by measurements
of a passive joint coordinate. This was demonstrated successfully by simulating the

It is generally accepted that more measurement points than unknown parameters have to be acquired
[Schréer 93]. (as a rule of thumb about twice as much [Zhuang 91]) Thus, the problem of parameter
identification is not that of finding the root for a determined nonlinear system of equations but of
minimizing an appropriate merit function based on the residuals of an overdetermined system of

nonlinear equations.
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calibration of a planar multi-loop structure using the Gauss-Newton method. A thirty
micrometer and 2.4 arcminutes level of measurement noise and 34 randomly distributed
measurement points for the identification of 11 parameters was used. Furthermore the
addition of passive constraints for calibrating robots without using external

measurement devices was proposed.

Wang [92, 93] and Masory [93] simulated forward calibration, the standard method for
serial robots, of a Stewart platform. Using the Gauss-Newton method the 42 parameters
could be identified within four to five iterations and within 6 - 7.5 hours of calculation
time on a SUN 3/260. Taking 20 randomly distributed measurement points in the
workspace with an added measurement noise of 61 micrometers and 10 arcseconds,
they have shown that a fifteen- to twentyfold accuracy improvement is possible. It was
further concluded that the influence of the errors of the passive joints are neglectably
small compared to other geometric deviations and that the accuracy of parallel robots is
of the same order of magnitude as for a comparable serial robot.

Kugiumtzis [94] simulated the calibration of a parallel robot equipped with a passive
4R joint-link train. The calibration model contained 30 parameters to identify.
Application of the Gauss-Newton method showed severe problems of rank deficiency
of the identification Jacobian, indicated by high singular values of the pseudoinverse,
due to seven almost linearly dependent parameters. After removing these seven
parameters found by manual inspection, identification could be successfully simulated
with a noise level of hundred micrometer and six arcminutes and thirtyfive

measurement points. The accuracy of the position was improved by a factor of twelve.

Ropponen [95] simulated a slightly inaccurately manufactured Stewart platform in
order to map the resulting accuracy. The latter was based on an analytically derived
identification Jacobian of the inverse model between error of world coordinates,

encoder offsets and geometric deviations.

Jagadeesh [95] simulated the calibration of a single loop structure using a calibration
model which takes into account errors in the kinematic parameters of the linkage, non-
ideal gears and deflections due to different payloads. The calibration of the structure
was simulated with a set of 72 simulated measurement points subjected to three
different payloads leading to 216 end-effector positions for the 39 parameters to
identify. Furthermore they proposed a two-step calibration procedure identifying first
the 27 parameters required to model non-ideal gears and the errors of the kinematic
linkage and in a second step the 12 parameters describing the deflection model. In a
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third approach, identification of the 14 non-ideal gear parameters and the 13 kinematic
parameters were separated leading to a three-step calibration procedure. For the first
step the single joint method described in Mooring [91] and Judd [90], based on the
work of Stone [86] was used. The first two methods worked well, decreasing the
maximal position error of 8 millimeters to about 8 micrometers within five to seven
hours of calculation time on a PC 486. The third method was less successful with an
improvement of the accuracy to 0.5 millimeters. No measurement noise was added, but
to generate the measurement points a more complicated defection model was used than
for calibration.

1.3.3 Experiments

Zobel [93] proposed a calibration model for a Delta robot containing 18 parameters. In
order to identify these parameters a premeasured fixture (precision plate) for full
position measurement with six touch points was used. The fixture could be placed in
three different positions on the base plate of the robot. In a first experiment three
parameters were identified using three error equations and it was shown that an error of
ten millimeters could easily be identified. To confirm the experimental results the three
parameters were also directly measured for comparison with the values obtained by
calibration.

Hollerbach [93] calibrated a multi-loop structure with six degrees of freedom by using a
premeasured fixture with twelve different locations allowing full pose measurement.
Furthermore, a calibration was performed without using external measurement devices.
Their multi-loop structure is all-in all equipped with nine sensors in order to be able to
calculate a unique solution for the direct problem. Thus, the internal sensors provide
three redundant measurements, which were used for calibration. 18 parameters were
identified using the Levenberg-Marquardt method. Simulations showed that the initial
guess could deviate up to ten percents from the accurate parameter set. They concluded
that if no external measurement devices is used the convergence of the identification
algorithm to a non-trivial solution depends strongly on the selected measurement
points. Similar results were presented by Nahvi [94] for a redundant parallel robot with
three degrees of freedom. Nahvi [96] addressed the question of choosing the optimal set
of measurement points. It was concluded by comparison that three existing
observability indices don't work satisfying. They proposed a new index referred to as
noise amplification index, which is defined to be the smallest singular value divided by
the condition number of the identification Jacobian. Application of this index to a
redundant, spherical, parallel robot, yielded smaller standard deviations for the
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estimated parameters of measurement sets with high noise amplification indices than of
the ones with /ow noise amplification indices. They concluded that a high noise
amplification index improves the robustness of the parameter estimation.

Wampler [95] calibrated a closed loop structure based on the implicit model, which will
be referred to as implicit calibration. They repeated the calibration experiments of
Hollerbach [93] confirming in general their results. In addition they identified fifty
parameters of a Stewart platform by means of eleven internal measurement devices. Six
of them were linear transducers to measure the length of legs. On one leg all five
passive joint coordinates were measured by means of wired potentiometers in order to
obtain a unique solution for the direct problem. Thus, the five redundant measurements
and twenty measurement points will lead to hundred error equations for the fifty

parameters to identify.

Zhuang [95] calibrated a Stewart platform using a theodolite for full pose measurement.
Measurement with the theodolite had a pose accuracy of about 127 micrometer, which
was sufficient compared to the repeatability of 2.5 millimeters. A set of twenty points
were collected of which fifteen were used for identification and five for validation of
the result. Inverse calibration using the Gauss-Newton method was performed and an
analytically differentiated identification Jacobian established. The resulting accuracy

almost reached the level of the repeatability.

Maurine [96] proposed a recalibration procedure for a Delta robot [Clavel 91] based on
displacement measurement of a single Laser sensor (triangulation). They stated that a
calibrated robot moved to a new work cell has to be recalibrated with respect to its
environment and that the offsets of the joint transducers must be newly identified. To
identify nine parameters they proposed a two-step method. In a first step a plane is
precisely located parallel to the x-y plane of the base frame and a first set of six
parameters is identified with this set-up. In a second step small cylinders are arranged in
a circle on this plane and the remaining three parameters identified. Their approach
resembles the plane/spheres set-up proposed in this work (paragraphs 4.2.6 and 5.4.4).
However, there is a major difference: No external measurement device is needed for the
plane/spheres set-up. Simulation showed the accuracy improvement to be not very
sensitive to the number of measurement points acquired. Simulations were performed
with 200 to 600 micrometers of measurement noise in order to show the robustness of
the proposed method. For the experimental part of their work they added a third step by
identifying first the orientation of the plane as well as the location of the cylinders.
They identified different sets of parameters depending on the initial values for the
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iterative non-linear least square algorithm. This confirms the problem of multiple
minima reported for the plane/spheres set-up in paragraph 5.4.4.

1.3.4 Concluding remarks

To the author's knowledge these are all the publications available on the subject of
calibration of parallel robots. Their number is small compared to the several thousands
on calibration of serial robots.

Some authors, whose work is based on simulations, assume a low and often unrealistic
noise level of their simulated orientation measurements. In this work high resolution
Laser encoders with a maximum deviation of *+ 25 arcseconds per revolution are used
(chapter 2). Measurements of the three orientation angles of a body in space with even
higher accuracy is very difficult and expensive using current technology.

1.4 Contributions

Listed below are various aspects of this work which are thought to contribute to the

current research on the improvement of the accuracy of parallel robots:

1. Two examples of parallel structures, which are not as well explored as the Stewart
platform, are chosen to be investigated with respect to accuracy improvement.

2. Mock-ups of the two robots were built aiming at verifying some of the proposed

concepts for accuracy improvement.

3. One of these two examples is an novel design for a parallel spherical structure with
three degrees of freedom called Argos. A generic deviation of Argos with two
degrees of freedom leads to another original design called PantoScope!.

4. A simple formula allowing the calculation of the minimal number of parameters for
a complete calibration model is proposed. Two carefully chosen parametric
calibration models for each of the two examples are introduced.

5. For each of the two examples a measurement system was built and some additional

interesting measurement set-ups are proposed.

11ts basic design can be found in annex A.1. The structure was further developed by Baumann [96] to a

force feedback manipulator for laparoscopic surgery.
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6. It is shown that accuracy improvement of parallel robots is indeed possible. The use

of implicit or semiparametric calibration leads to a gain in speed and accuracy.

7. For real-time applications an iterative algorithm solving the direct and inverse
problem of the calibration models is proposed.

The main contribution of the thesis consists of the experimental verification of the

proposed methods to improve the accuracy of parallel robots.

1.5 Report's outline

Concepts which minimize certain mechanical tolerances to lower the modeling effort
are described first (chapter 2) and two mock-ups of the Delta and Argos robot are

presented.

The following four chapters deal with the calibration which consist of four steps, these
are modeling, measurement, identification and implementation.

In chapter 3 some general properties of a good calibration model are introduced.
Several parametric models for the Delta and the Argos robots are proposed.

In chapter 4 measurement set-ups for each of the two examples were elaborated based
on a thorough investigation of commercially available systems. Promising propositions
for industrial calibration of the Delta robot are presented.

Chapter 5 deals with the identification of the parameters of the proposed models.
Suitable calibration methods are evaluated by simulation on a single-loop structure.
These methods are successfully applied to identify the kinematic parameters for both,
the Delta and Argos structure.

Chapter 6 shows how the implicit, identified models can be solved for the direct and the
inverse problem. In particular efforts are made to obtain real-time solutions for the

Delta robot.

In chapter 7 results are summarized and an outlook is presented on topics in the field of
accuracy improvement of parallel robots which would be interesting to investigate in

the future.
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1.6 Examples of parallel robots

1.6.1 Introduction

In most Literature on parallel robots the Stewart Platform is employed as an examples
of a fully parallel, non-redundant manipulator with six degrees of freedom. In this work
it will also be used as an examples. However, some of the problems encountered in
accuracy improving of parallel manipulators cannot be demonstrated with the Stewart
Platform.

Some errors in the pose of the end-effector which occur for manipulators with less than
six degrees of freedom cannot be influenced by its actuators. These non-influenceable
errors are imposed by the mechanical structure of the robot and cannot be corrected by
a calibration procedure. Taking for instance a SCARA robot with its four degrees of
freedom, it is easy to see that the remaining, non-influenceable two degrees of freedom
correspond to the perpendicularly of the end-effector with respect to its base.

To take the considerations above into account, two further examples are added, the first
is the Delta robot with three degrees of freedom in position. The second example is a
novel parallel structure named Argos with three degrees of freedom in orientation.

Having no common degree of freedom the Delta robot and the Argos structure are
somewhat contrary., whereas the Stewart Platform joins these two structures
representing a general parallel structure having all possible degrees of freedom in space.
The latter will mainly be used for comparison with existing work.

1.6.2 The Stewart Platform

The "Stewart (Gough) Platform” (fig. 1.8) is the most often used name for the first
parallel robot with six degrees of freedom [Stewart 65, Fichter 86]. The end-effector is
connected to its base by six identical kinematic chains. Each chain consists of a
spherical joint (S) attached to the base plate, a linear actuator (P) and another spherical
joint (S) attached to the end-effector adding up to a 6[SPS] structure. In such a
construction, each joint-link train could revolve around its longitudinal axis which is
referred to as an isolated degree of freedom. To avoid this spinning motion, most
designers replace one of the two spherical joints by a universal joint (U). A joint-link

train of a Stewart platform is sometimes simply referred to as "leg".
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end-effetor

spherical
joint (S)

universal
joint (U)

Fig. 1.8: Stewart Platform having six degrees of freedom [Fichter 86]

1.6.3 The Delta robot

The Delta robot (fig. 1.9) is a 3[R(2S/2S)]! parallel manipulator with three degrees of
freedom whereby the movement of the end-effector is a pure translation in space
[Clavel 85]. The concept keeps the end-effector in a paraliel position with respect to the
base, which has been termed a spatial parallelogram [Clavel 91]. The end-effector is
connected to the base by three identical kinematic chains. These chains have a tree-
structure and are composed of a revolute joint (R) attached to the base whereas the next
element, the “arm”, branches out into two rods by means of two spherical joints (2S).

1The structural notation 3[R(2S/2S)] is interpreted as follows: Start at the inner most bracket (25/2S),
which is interpreted as two bodies lying in parallel equipped with two spherical joints (S) each. Continue
with the next bracket [R(2S/2S)], which is interpreted as a branching body equipped with one revolute
joint (R) and two S-joints. This is the description for one joint-link train. Three of them connect the base
to the end-effector. The base is always on the left hand side of the formula, whereas the end-effector is on

the right hand side.
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Each of the six rods called "forearms" is then connected to the end-effector by another
spherical joint (S).

S-joints

Fig. 1.9: Delta robot with its three translational degrees of freedom

1.6.4 The Argos structure

The Argos structure (fig. 1.10) is a novel 3[R(2R/2S)S] design of a rotative parallel
manipulator with three degrees of freedom [Vischer 95]. A generic derivation of
spherical mechanisms can be found in annex A including a version of the Argos
structure with only two degrees of freedom named PantoScope.

The end-effector is connected to its base by three identical kinematic chains. Each chain
is attached to the base plate by a revolute joint (R) with its axis pointing to the virtual
center of rotation. This axis carries a pantograph. A pantograph is a planar
parallelogram equipped with four revolute joints in its corners. In order to avoid static
over-determination in space, it is possible to replace one pair of R-joints by a pair of S-
joints as shown in figure 1.10. The long end of the pantograph's distal link describes a
sphere around the virtual center of rotation. An S-joint links the pantograph and the
end-effector.
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Two kinds of motorizations are possible. The motor can either actuate the first R-joint
(fig. 1.10) or by means of conical gearwheels the second R-joint. The first solution is
easier to carry out, but the pantograph is subjected to bending stress. In the second case
the pantograph works in a push-pull mode, which is generally preferable. However, a
detailed study of the second case had shown that the mechanism remains in a
singularity right at its nominal position [Vischer 95]. This is not the case for the first
possibility of motorization, which will therefore be further discussed.

virtual center
of rotation

long end of the panto-
graph's distal link —~

Fig. 1.10:  Argos structure with its three rotational degrees of freedom

A criterion for the mobility (MO) of spatial multibody mechanisms can be found in
Hunt [78] and Clavel [91]. It is a modified Griibler criterion:

MO= Y MO, ~6+bo (1.1)

where MO, stands for the degrees of freedom of each joint of the mechanism and bo for

the number of independent loops.

Applying eq. 1.1 to the Argos structure shows that for an S-pair only five instead of six
degrees of freedom have to be counted. This is due to the fact that the connecting rod
can be turned around its longitudinal axis without influencing the pose of the end-
effector representing an isolated degree of freedom. For the calculation one of the S-
joints of an S-pair can be considered as an universal joint (U) blocking off the isolated
degree of freedom:

MO= 3%(1+2+5+3)-6*%5=3 (1.2)
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However, no information is given about the nature of the degrees of freedom to be
expected, e.g. whether they are rotative or translative. This is due to the lack of
information on the arrangement of the joints relative to each other. Therefore eq. 1.1
must be applied with care or rather with extended knowledge about the arrangement of
the joints in the mechanisms under investigation. In case of planar or spherical
mechanisms the factor of 6 has to be replaced by a factor of 3. However, eq. 1.1 fails
for example when applied to Bennet's linkage {Hunt 78], which consists of a spatial
loop of four non-parallel revolute joints (R), still having a mobility of one and not of
minus two as predicted by eq. 1.1.






2. Conception

2.1 Introduction

Allocating little or no restrictions to the tolerances for the mechanical parts of a robot
would lower its manufacturing costs. After manufacturing, all of the deviations could
be identified by an appropriate calibration procedure and used to control the robot

accurately. Unfortunately, this is not possible for two reasons:

- If the robot has less than six degrees of freedom, some pose errors cannot be
influenced by its actuators and therefore not be corrected by the software. This is the
case for both of the chosen examples. For the Delta robot the orientation of the end-
effector is imposed by the structure whereas for the Argos structure it is the position

of the virtual rotation center.

- If the passive joints of several degrees of freedom are not designed as precisely as
possible the computational difficulty of a calibration process becomes enormous.
Spherical joints are fairly easy to manufacture precisely. Assuming perfect spherical
joints the number of parameters to identify drops from 138 to 54 for the Delta robot
(chapter 3). Identification and implementation are consequently greatly simplified.

In this chapter the conception and construction phases of the two mock-ups is described
with the aim of obtaining high accuracy in the end-effector pose especially in the non-

controllable world coordinates.

2.2 Basic concepts for accurate robots

Concepts presented here are based on the use of a common machine park. For instance
milling, turning and grinding are possible whereas other techniques such as laser
cutting or electro-polishing were excluded in order to minimize the manufacturing costs
of the two unmotorized mock-ups.

In the conception phase of parallel structures not only the questions of how to produce
one single, accurate kinematic chain arise, but also the question of how to align
precisely the chains relative to one another. For spatial parallel structures the

positioning of three or six joint-link trains is typical.
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The following concepts were used to manufacture the two mock-ups:

Spheres as well as cylinders can be manufactured very precisely and quite cheaply.
This may be explained by historical reasons such as the use of both elements in
bearings. These two mechanical elements are therefore used whenever possible. An
examples is the construction of the spherical joints (S) of both the Argos and the
Delta mock-up.

Cylinders are fixed to the mock-up in V-groves. This offers not only the advantage
of well defined contact lines between cylinder and V-grove, but also location of two
V-groves relative to each-other is generally easier than of two holes. Cylinders as

well as V-groves can easy be modified to get contact points instead of contact lines.

V-groves offer the advantage that two parallel axes can be manufactured in one

clamping, which reduces the error of the parallelism to the milling machine error.

Assembly fixtures are used in order to avoid allocate tolerances to each single

mechanical part.

Hyperstatism is avoided in order not to generate internal forces deforming the
structure. An example is the concept of a hole, a V-grove and a plane to fit two parts
together. The hole fixes the position of the parts with respect to each other whereas
the V-grove and the plane fix the orientation. This is applied for the clamping of the
base of the Delta mock-up to the measuring machine by three solenoids having solid

state joints.

To control thermal expansion, parts of the Delta mock-up such as the forearms and
the arms are built of Invar. Invar is a nickel based alloy with a tenfold smaller
thermal dilatation factor (10 K™') as compared to ordinary steel.

Apart from the claim for accuracy, simplicity of the mechanical parts of the prototype is

important to keep manufacturing costs low. Further constraints are a large workspace,

pushing the singularities to the border of the workspace, simplicity of the nominal

model, possibility for different measurement set-ups, possibility of motorization, a

modular system and so on.
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2.3 Mock-up of the Delta robot

2.3.1 Introduction

The main effort of the conception phase for the Delta robot consists in maintaining the
spatial parallelogram as perfect as possible since orientation errors in the end-effector
pose cannot be corrected by calibration. This imposes the S-joints to be as perfect as
possible and the connecting line between the proximal S-joints, as well as between the
distal S-joints, must be as parallel as possible to the motor axis (fig. 1.9). In paragraph
3.4.6 a set of 6 parameters per main joint-link train (P1) disturbing this parallelism is
detected. Minimization of these six parameters is therefore the main goal of this section

besides the design of perfect S-joints.

2.3.2 Construction

Figure 2.1 shows a design worksheet of the mock-up of the Delta robot. Laser encoders
Canon-M1 with 50'000 physical increments per revolution were chosen to measure the

motor angles. Their specifications are:
Measurement volume (mechanical stoppers on the mock-up) -30° to 135°
Resolution 6.5"
Accuracy (accumulated error per revolution) 25"

Only one of the joint-link trains is represented stretched out in figure 2.1
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Fig. 2.1:

reference
frame 3

[ reference
frame 2

|
=

Design worksheet of the Delta mock-up.

Figure 2.2 shows in detail how the cylindrical housings containing the motor axes are

clamped to the base plate according to the cylinder / V-grove concept.

Fig. 2.2:

The cylinder / V-grove concept applied to the motor axis

Figure 2.3 shows a further application of a proposed concept: The end-effector was

screwed to the base during manufacturing. The two V-groves indicated by arrows are

milled in the same clamping to get the two V-groves as parallel as possible. The V-
grove indicated by the left arrow builds the support for the distal S-joints at the end-

effector, whereas the V-grove on the base supports the motor axis. As remarked in the
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introduction of this section (paragraph 2.3.1) these two lines have to be parallel in order
to maintain the space parallelogram. The rather complicated shape of the end-effector is
required for the orientation measurement device proposed in paragraph 4.2.3.

V-groves milled in

end-effector the same clamping

Fig. 2.3: Milling in one clamping of two V-groves for the motor axis and the distal
S-joints.

Figure 2.4 shows how ball-socket joints can be produced very precisely. They consist
of two precision parts, namely a sphere and a hollow cylinder, which is honed inside.
The cylinder slides on the sphere with its interior circle. The contact force is established

with a spring. Magnets or vacuum may used instead.

\'\-:.\ pr:sis fi
press fit :
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hollow r.')rlimler sphero
loase fit sliding omm't

S j’:#n N
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‘P’"“II part mmnum.lns
the contact force

Fig.2.4: Precise ball-socket joint (S) with an access angle of over + 45 degrees

Figure 2.5 shows the fully assembled mock-up in a hanging position as the industrial

version of the Delta robot.
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Fig. 2.5: The Delta mock-up
2.4 Mock-up of the Argos structure

2.4.1 Introduction

In the conception phase of the Argos structure deviations of the position of the virtual
center must be minimized since they cannot be corrected by calibration. This requires
again perfect S-joints. Furthermore, the pantographs (fig. 1.10) have to describe a
perfect circle with their distal link. The motor axes have to be located in the planes of
the pantographs and pointing to the virtual center. The three S-joints must be arranged

on the same sphere around the virtual center.

2.4.2 Construction

Figure 2.6 shows a design worksheet of the mock-up of the Argos structure. The same
Laser encoders as for the Delta mock-up are used to measure the motor angles

(paragraph 2.3.2).
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Fig 2.6: Design worksheet of the Argos mock-up [Bubendorf 96].

Figure 2.7 shows in detail how the housing of the motor axis is fixed to the support by

means of a double V-grove and a hose band clip.

| %
'-:-::.~ i | it home band clip
Fig. 2.7: Fixation of the housing of the motor axis by a double V-grove and a hose
band clip.

Figure 2.8 shows a steel cable pantograph. Compared to a conventional design it has
the advantages to require only two instead of four revolute joints and the stiffness
remains constant within the full circle. The conventional design suffers of a singularity

with zero stiffness when the parallelogram joins the antiparallelogram [Dijksman 76].
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Constant stiffness is advantageous for the Argos structure because the pantographs have

a large mobility range of over = 60 degrees. To increase stiffness the steel cable can be

replaced by a steel strip.

Steel cable pantograph

Steel cable

Conventional pantograph

IAJ A
Singularity
ome O TP @ i
Fig. 2.8: A singularity-free pantograph with a steel cable. To support the axes of

the pantograph an extra large H-shaped part was designed to absorb
torsional stress.

The left hand side of figure 2.9 shows how the proximal link is aligned parallel to the
distal link by means of a U-shaped fixture. The right hand side of figure 2.9 shows the
alignment procedure of the supports of motor axes with respect to the virtual rotation

center of the structure using two additional fixtures.

Fixture 1 ; 7N

virtual '\‘._ | /_,\"__: \~
center W

Fig. 2.9: Alignment of mechanical parts by means of precise fixtures.
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Figure 2.10 shows the fully assembled Argos mock-up.

Fig. 2.10:  The Argos mock-up

2.5 Conclusion

In this chapter concepts to built accurate robots were proposed and applied to two
mock-ups of parallel robots. Interference of different joint-link trains, singularities and
alignment of design elements in space cause severe problems. A powerful three-
dimensional computer aided design program (3D-CAD) is therefore very helpful since
the complexity of structural features often overloads the power of imagination.
Different aspects of the construction of parallel robots are discussed in detail by Clavel
[91].

The chosen cylinder/V-grove concept offers an advantage for testing different
identification procedures. Small mechanical deviations can easily be realized by
clamping a sheet of steel under the cylinder. If the thickness is known, it can be tested

whether the identification procedure is capable to find this known deviation.

To illustrate the efficiency of the proposed concepts the deviations between the
measured and the predicted end-effector's pose will be given (for more details see
figure 5.9). Scanned all over the workspace is the Euclidean norm of the end-effector’s
error vector for both the Delta and the Argos mock-up. Figure 2.10 shows two

histograms of the orientation error and the position error, respectively.
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Fig. 2.11:  Histograms showing the orientation error of the Delta and the position
error of the Argos, respectively

Deviations in the position of the virtual rotation center of the Argos structure may
further be improved by better alignment of mechanical parts whereas the deviations of
the orientation of the end-effector of the Delta are small with a mean value of 27

arcminutes and a standard deviation of 5 arcminutes.



3. Modeling

3.1 Introduction

The aim of the modeling phase is to create one or a set of appropriate representation
functions. This set of functions will later be used to store the geometrical relations of a
robot. It can include either parameters of the underlying system or not [Hollerbach 89],
and will be referred to as parametric and nonparametric modeling, respectively.

Nonparametric modeling is carried out by taking mathematical functions having no
physical interpretation. Examples are polynomial fitting [Mooring 91] and neural
networks [Kung 89, LeeS 91, Flury 94]. The modeling effort is much reduced since no
inside knowledge of the underlying system is necessary. In other words: the system is
treated as a "black box". The mathematical functions will be selected in such a way that
they are convenient and are easy to treat during the identification step as well as in the
implementation step, as are for example polynomials. Nevertheless the disadvantage of
nonparametric modeling is on the measurement side, which is probably the most
“expensive" step of a calibration procedure. Measurement points have to be considered
in the entire volume where the calibration should be valid. The number of measurement
points to be taken into account increases with the increasing non-linearity of the
underlying system.

Parametric modeling is based on physical relations of the system under investigation.
An example is the Navier-Stokes equation as physical model for any kind of fluid flow.
The advantage over non-parametric modeling is already given by its definition,
incorporating more inside knowledge about the underlying system. It is the more
laborious way to establish a model, but its difficulty decreases if restricted only to the
geometrical deviations of rigid bodies. The parametric model is global and covers the
entire workspace. As will be seen later in chapter 4, parametric modeling allows some
interesting propositions for set-ups in the measurement phase. Examples are the low-
cost "plane/spheres" and "short-cut” set-ups proposed for the Delta robot.

Another important fact to keep in mind is that both of the chosen examples have only
three of the six degrees of freedom of the Euclidean space. The other three degrees of
freedom are blocked by the structure itself. Taking the Delta robot for instance, the
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orientation can not be influenced by the actuators, but will still slightly vary over the
working volume due to the tolerances of the mechanical parts. For that kind of robot
parametric modeling offers an enormous advantage with its ability to analyze the source
of the orientation error. In a quality control step the mechanical part out of tolerance
can be detected by an identification procedure and may be exchanged with parts lying
within the tolerances in order to guarantee that the orientation changes stay within pre-

specified boundaries.

An additional advantage of parametric models is the fact that they can be used to
simulate the deviations at the end-effector caused by estimated tolerances of the
mechanical parts of the robot.

In order to learn as much as possible about the mathematics describing the geometry of
parallel robots, this work is restricted to the study of parametric modeling.

3.2 Properties of a good model

Everett [87] proposes three properties for a good parametric model for calibration.
First, the model must contain a sufficient number of parameters to describe the
kinematics of the robot under investigation without being redundant. This is referred to
as completeness. The second property required for a model is the reflection of small
changes in the geometry by small variations of its parameters. This property is called
proportionality. The third property is the ability to translate one valid model into any
other accepted model, which is called equivalence. Any two complete models are
therefore necessarily equivalent. It follows that equivalence prevents one complete
model from producing greater accuracy than another one [Mooring 91].

The claim for equivalence imposes that there are still several ways to do the
parameterization of a good model. This freedom will be used to create models which
are easy to treat in the implementation phase (chapter 6). In this section the first two
properties are discussed in details and an example on how to establish a model for a
SCARA robot is given at the end of the section.

3.2.1 Completeness

For serial robots (open-loop) a simple equation to determine the minimal number of
geometrical parameters for a complete model has been proposed [Everett 88b]:
C=4R+2P+6 3.1
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where R is the number of revolute joints, P is the number of prismatic joints, and C is
the total number of independent parameters for a complete model. Everett [88c] proved
this equation mathematically.

For single-loop parallel robots some examples as well as an equation for the minimal
number of geometrical parameters for a complete model are given in Lin [89]. In
addition to open-loop structures these single-loop structures contain unsensed spherical
joints (S) as well as revolute (R) and prismatic joints (P) which can be either sensed or
unsensed!. SS counts the number of pairs of S-joints. The number of encoders (E) or
more general measurement devices is counted by E.

C=3R+P+SS+E+6 2 (3.2)

For multi-loop paralle]l robots no such equation has been found in the literature. By
extending eq. 3.2 the following equation for multi-loop structures is proposed, where
the number of loops corresponds to L and the number of arbitrarily located frames to F:

C=3R+P+SS+E+6L+6(F-1)

(3.3)

This equation was empirically tested on several examples and seems to be valid under
the following assumptions:

- The structure contains only lower joints3 of one degree of freedom [Denavit 55],
which are either sensed or unsensed such as revolute joints (R) as well as prismatic
joints (P).

- The only allowed lower joint with several degrees of freedom is an unsensed spherical
joint (S). This is due to the fact that spherical joints can be manufactured very precisely

1Sensed and unsensed indicates if the joint is equipped with a sensor or not.

2This corresponds to the formula proposed by Lin [89], who mentioned also that there are another 6
parameters to be added for a transformation on the end-effector link in order to get to an arbitrarily

located tool-frame . Therefore eq. 3.2 can be writtenas: C=3R+P+SS+E+6+6

3For the definition of lower joints (<> higher joints) see Mooring [91]. Lower joints have a single and
unique axis of motion, whereas higher joints take into account deviations in their movements. It is a

common assumption that real joints of robots can be modeled in a first approximation as lower joints.
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as discussed in chapter 2. Therefore S-joints can be assumed to be perfect with all three

axes intersecting in a common point.

- All remaining lower joints of several degrees of freedom have to be replaced by R-
and P-joints [Hiller 88]. This corresponds to the statement that with the exception of an
S-joint all lower joints with several degrees of freedom cannot be assumed to be
perfect. Therefore an universal joint has to be replaced by two R joints which are
neither exactly perpendicular to each other nor do the axes intersect at a common point.

- F counts frames which are fully arbitrarily chosen. A fully arbitrary choice means that
there is no restriction on any of the 6 parameters needed for a general transformation to
get from one frame to another one in space. Fully arbitrarily chosen frames are
indicated by uppercase letters i.e. {B} or {P} for the base and the moving frame,
respectively. On the other hand lowercase letters will be used to indicate fully restricted

frames such as are {b} and {p}.

- A SS-pair is composed of two S-joints connected by a simple rod without any
intermediate joint or frame attached to it. Excluded from this category are joints
composed of a branching between rigid links with three or more S-joints as well as a
link equipped with two S-joints which is chosen as an end-effector with an arbitrarily

moving frame attached to it.

For practical considerations in eq. 3.3 the possibility is given to choose the base and the
moving frame in an arbitrary location (F=2), which requires an even higher number of
independent parameters. According to the Denavit-Hartenberg (DH)-parameterization!
[Denavit 55] a base frame {b} that is not arbitrarily located would lie with its z-axis in
the direction of the first joint axis and the x-axis in direction of the common normal to
the second joint axis (figure 3.3). It is nearly impossible to locate an object, especially
the end-effector measurement device in the working volume of the robot relative to this
base frame {b}. This is due to the fact that the joint axis and in particular the common
normal are virtual lines in space which in other words are not represented physically on
the robot itself. Claiming the presence of a physically existing base frame as for
examples hole / V-grove / plane arrangement corresponds to the claim for an arbitrarily
located base frame {B}. If a calibration model is only used for simulation, no arbitrarily

located base and moving frame is necessary.

IFor definition of the DH-parameters see paragraph 3.2.2.
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Application of eq. 3.3 to some examples with F=2 leads to the following results:
robots reference joint-link-trains R P|ISS|IE]|]L]| C:
SCARA - 2RP 2 1 03| 0]16
Puma - 6R 6 0] 0f6|0]30
Kite! [Vischer 95] 3R +2R 5 01 0] 2 1 | 29
PantoScope! " R(2R/2S)2R+4R | 9 0 2120 48 -
Argos " 3[R(2R/2S)S] 331 0 |3*1| 3| 5 |69
Argos " 3[RQR/SR)3R] 3*11| o | o | 3 | 5 [138;
Agile Eye }[Gosselin 94] 3[3R] 3*31 0 0 3 2 | 48
Agile Eye " 3[2RS] 321 0 0] 3| 2 |39
Agile Eye " 3[5R] 351010 3 (2 |66
Delta-Cardan | [Clavel 91] 3[SR] 3510 0] 3| 2]66°
Linear-Delta " 3[P(25/2S)] 0 [3*1]3*2] 3 | 5 |48 ]
Linear-Delta " 3[P(5R/5R)] 3*10|3*1| 0 | 3 | 5 |132°
Delta " 3[R(25/25)] 31 0 [3*2 3 | 5 |54
Delta ! 3[R(5R/5R)] 3*11f O 0| 3] 5 |]138.
Stewart? [Stewart 65] 6[2S] 0 0 |6¥1| 0 | 5 |42
Stewart " 6[SPS] 0 [6*1| O 6| 5 |48
Stewart " 6[2RP3R] 6*5 [6*¥1 0 | 6 | 5 |'138°
Table. 3.1: Minimal number of design parameters for a complete calibration model

for some examples.

For the Argos structure a simplified model will be introduced assuming that the whole
structure is perfectly spherical. The question arising then is how to calculate the
munimal number of parameters (C) for a structure which is either perfectly plane or
spherical. On spheres as well as on planes the degrees of freedom are reduced from six
to three. The following equation is proposed for perfectly planar or spherical

mechanisms:
C=R+S+E+3L+3(F-1) (3.4)

It is interesting to note that spherical joints (S) do behave exactly like rotative joints (R)
in a plane and on a sphere. If they are unsensed, interchanging the joints is possible

1See Annex A.1

2The prismatic actuators (P) are assumed to be perfectly assembly. For a more detailed discussion see

paragraph 3.3.1.
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without influencing the model. Prismatic joints (P) do not count. As an example the
plane complementary to the Stewart Platform is taken [Merlet 90, Gosselin 88, Gosselin
91]:

Fig. 3.2: Planar "Stewart"-Platform
Application of eq. 3.4 leads to:
C=0+6+3+3*2+3(2-1)=18

Two coordinates are required to locate a S-joint in the plane. Twelve parameters are
therefore needed to describe the position of the six S-joints in the {B}-frame and in the
{P}-frame, respectively. To these twelve parameters another three angles have to be
added, indicating the misalignment of the axes of the prismatic actuators to the
connecting line of the two S-joints. Finally another three parameters for the three
encoder offsets have to be added to end up with the proposed eighteen parameters.
Replacement of the S-joints by R-joints will not affect the model, but will cut off the
three isolated degrees of freedom enabling each joint-link train (SPS) to rotate about its
longitudinal axis.

Another example is the spherical parallel robot of Gosselin [88] with its 3[3R]
structure. According to eq. 3.4 twenty-one parameters are necessary for a complete
model assuming that it is perfectly spherical. For the same structure forty-eight
parameters were found in space (table 3.1). The assumption that a mechanism is
perfectly plane or spherical leads to a considerable reduction of the parameters required

for a complete model.
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3.2.2 Proportionality

It has been shown so far how many parameters have to be taken into account for a
complete calibration model. In this paragraph the question "what of kind of parameters
can be used for a calibration model” will be addressed.

In the identification phase (chapter 5) the chosen parameters will be slightly varied in
order to fit the calibration mode] to the measurement data. This leads to an important
claim for the parameterization of calibration models. Small variations in the robot
topology should be represented by small variations in the chosen parameterization. This
property is referred to as proportionality. In nominal modeling one does not generally
intend to vary the design parameters slightly. Thus, propositions made for the
parameterization of nominal models of robots cannot be used for calibration models
without further consideration. In particular it has to be checked whether each proposed
parameterization fulfills the criteria of proportionality and completeness or not.

These two properties will be illustrated using the DH(Denavit&Hartenberg)-parameteri-
zation proposed by Denavit [55] for nominal modeling, which is widely used in
robotics. As mentioned by Hayati [83], the DH-parameterization fails to be proportional
for nearly parallel axes. Everett [87] pointed out that the DH-parameterization is
complete for R-joints, but becomes redundant for P-joints by introducing four instead
of two parameters (see eq. 3.1).

In literature three main groups of propositions for systematic parameterization of robots
can be found:

1. for nominal models of serial structures [Denavit 55]

2. for calibration models of serial structures [Hayati 83, Stone 86, Chen 86, Broderick
88, Zhuang 90]. Hollerbach [91] has given a good overview about these parameteri-

zations.
3. for nominal models of parallel structures [Sheth 71, Meghed 83, Khalil 86]

To the author's knowledge no systematic approach exists for the parameterization of
calibration models of parallel robots. Therefore, propositions made for serial structures
will be adapted. The parameterizations mentioned under point 2 generally do not
respect the claim for being non-redundant because they contain four to nine parameters
independent of the joint type (R,P). Redundancy in the parameters causes severe
problems in the identification phase because the identification Jacobian becomes
singular (chapter 5). Schroer [93] investigated the claim for proportionality. He
concluded that a non-redundant parameterization that always stays proportional doesn't
exist. Thus, he proposed to choose the parameterization as a function of the topology of
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the robot. This is an extension of a concept already proposed by Hayati [83] using for
nearly perpendicular joint axes the DH-parameterization. For nearly parallel joint axes a
new parameterization is referred to as the H(Hayati)-parameterization. These two cases

represent the two main topologies of joint axes in robotics:

Nearly perpendicular axes -> DH (Denavit-Hartenberg)-parameterization

Nearly parallel axes -> H (Hayati)-parameterization

For the DH-parameterization slightly varying definitions can be found [Denavit 55,
Paul 81, Craig 89]. In this work the definition given by Paul is being used. Figure 3.3
represents the non-redundant case of two consecutive revolute joints.

joint axis i+1

joint axis i

Fig. 3.3: The DH(Denavit&Hartenberg)-parameterization for revolute joints

The frame {i-1} is attached to the joint axis i whereas the frame {i} is fixed on the joint
axis i+1. The origin of the new frame {i} is defined by the common normal between
the two joint axes. The transformation matrix between the two frames is given by:

i"f = Rot4(z,_,,0,]- Trans4[z, ,,d.]- Trans4[x' ,a,]- Rot4[x',a,]! (3.52)

The transformations are performed as follows:

Turn axis x,_, about axis z,_, by the joint angle 6, until the x,_, axis becomes parallel
to the common normal between the two joint axes. Move by the link offset 4, along the

I For the matrix functions Rot4 and Trans4 see annex B and Craig {89].
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joint axis i to the lower end of the common normal. Carry on moving along the
common normal by the link length q; to reach the origin of the frame {i}. Turn the

parallel line to the joint axis i by a twist angle ¢, until the final position of the frame

{1} on the joint axis i+/ is reached.

The DH-parameterization fails to be proportional for nearly parallel axes. For very

small changes of the relative position of the two axes with respect to each other results
a non-proportional change of the offset d; [Hayati 83, Kim 87, Mooring 91].

The H-parameterization (fig. 3.4) introduced in Hayati [83] stays proportional for
nearly parallel axes. The origin of the frame {i} is no more defined by the common
normal, but by the intersection of the xy-plane of the frame {i-1} and the joint axis i+/:

joint axis i+1

joint axis i

Fig. 3.4: The H(Hayati)-parameterization for revolute joints for nearly parallel axes

The H-parameterization is given by:
MT = Rot4[z,_,,8,]- Trans4[x',a;]- Rot4[x' ,a.]- Rot4[y" ,B,] (3.5b)
The transformations are performed as follows:

Turn axis x,_, about the axis z,_, by the joint angle 6, until the connecting line

between the two frame origins is reached. Move along the new axis x' by the link
length! g, to reach the origin of the frame {i}. Turn axis y' about the axis x' by a first
twist angle o, until reaching the common normal between the connecting line and the

INote that the link length defined here is not the same as in the DH-representation.
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joint axis i+ /. This common normal defines the axis y; of the new frame {i}. It remains
to turn the axis z" about the axis y, by a second twist angle S, to reach the final

position of the frame {i} on the joint axis i+/.

The H-parameterization becomes singular if the two axes of the joints become
orthogonal to each other because the origin of the frame {i} becomes undefined.

To summarize this paragraph a single transformation! containing the DH- as well as the

H-parameterization is introduced:
i"fT__ = Rot4(z,_,,0,1- Trans4(z,_,,d;]- Trans4{x' ,a;]- Rot4[x',0,]- Rot4[y",B;] (3.6)

According to Schréer [93] the parameterization for a complete and proportional model
can be rewritten as shown in table 3.5. The crosses indicate which parameters have to
be taken, {C}stands for the current frame, J, for the joint axis of a revolute joint and

J, for the joint axis of a prismatic joint.

joint angle | joint offset | link length | twist angle 1 | twist angle 2 | typ of pa-
) d a o B rameters
{C}LI, X T x X X - DH
{chJ, X - X X H
{C}LJ, X - - X - DH
{chJ, - - - X X H

Table 3.5: Topology dependent choice of parameters for a complete and proportional
model using the representation given in eq. 3.6

The concept of parameterization summarized in table 3.5 works for a lot of robot
topologies with the exception of sensed, consecutive, prismatic joints for example,
where problems arise to model the encoder offset [Schréer 93]. This case is very rare in
parallel robot topologies and therefore will not be treated here.

For a calibration model it is important to ask for what kind of topologies singularities
arise in a chosen parameterization? As has been shown in this paragraph, the difference
in the singularities between the DH- and the H-parameterization is only generated by
the difference of the definition of the origin of two consecutive frames. The definition,

INotice that the definition of the joint angle, the link offset, the link length and the twist angles depends

of the chosen parameterization and is therefore different for the DH-parameterization then for the H-

parameterization.
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that the z-axis is laying on the joint axis is only a standardized nomenclature and is
therefore arbitrary.

If in this work is referred to one of the two parameterization, then only the definition of
the origin of the consecutive frame is meant and no restriction is given on the
nomenclature. For the Argos structure for instance a DH-parameterization is used
having the x-axis on the joint axis.

3.2.3 Calibration model for a serial SCARA robot

As an example a serial SCARA robot (fig. 3.6) having three degrees of freedom will be
parameterized. The main characteristics of SCARA robots are the possession of three
nearly parallel joint axes. According to table 3.5 H-parameters will be used to get from
the first to the last joint axis. A partial DH-transformations will lead to a intermediate
frame {3} having its z-axis already coincident with the z-axis of the arbitrarily located
{P}-frame. It remains to twist the x-axis of {3} about the z-axis until it becomes
coincident with the x-axis of the {P}-frame!.

1. R-joint 2.R-joint  Fjoint

Zp=23
Xp
X3
Z‘e
—
{B}

Fig. 3.6: ParameterizationZ of a SCARA-robot with a 2RP structure

INotice that the H-parameterization fails for coincident z-axes because the connection line between the

two intersection points with the x-y plane gets undefined.

2The notation {P}={3} indicates that the two frames {P} and {3} have the same origin and the

transformation between is therefore a pure rotation.
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According to table 3.1 sixteen parameters are required for a complete robot calibration
model which is referred to as model 16. Due to the serial topology of the SCARA robot,
the calibration model 16 can be established by simple multiplication of homogeneous
matrices. Together with table 3.7 the model 16 is given by:

ST=tTATATAT AT

(3.7
twist angle 2 | parameter
B, H
°T 60, i 2 o B, H
'T 60, i a x, B, H
23? 0, do, - a, - DH
?f 6, - - - - undef.

Table 3.7:  Parameters to be substituted into eq. 3.6 for the complete and proportional
calibration model 16

3.3 Models for the Stewart Platform

3.3.1 Introduction

According to table 3.1, 138 parameters are required for a complete model of the general
Stewart platform taking into account all possible geometrical deviations. Wang [92]!
used such a model to simulate the final end-effector accuracy resulting from design
tolerances. He concluded that the resulting accuracy is about the same as for a
comparable serial structure and that the effect of deviations in passive joints on the end-
effector accuracy is negligibly small compared to the other deviations. With perfect
spherical joints the number of independent parameters drops from 138 to 48 parameters
(Table 3.1). Wang [92], Innocenti [95] and Zhuang [95] used a model with 42
parameters for calibration assuming that with exception of the encoder offsets the

l1n Wang [92) only 132 independent parameters including the encoder offset were found. The missing
parameter per joint-link train is caused by the assumption that the last virtual R-joint of the upper S-joint
has to lie in the z-y-plane of the end-effector frame {P}. Dropping this constraint leads to the proposed

138 parameters.
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prismatic actuators (P) are perfectly assembled. In order to apply eq. 3.3, the SPS joint-
link train has to be replaced by an SS pair (Table 3.1). The model 42 is introduced in
the following section.

3.3.2 Model 42

L,
[
Ci
Y
Fig. 3.8: Parameterization for the model 42 of the Stewart - Platform

The chosen parameterization is shown in figure 3.8. Note that the model 42 can be
established with the definition of only two frames {B} and {P}. The six closure
equations representing the model 42 are given by:

CB/” -CB: = L,.2
= with i=1..6 (3.8)
CB =P+R.B-C

where P is a vector pointing of the origin of the {B}-frame to the origin of the {P}-
frame containing the three world coordinated x,y and z. R is a rotation matrix
describing the orientation of the {P}-frame with respect to the {B}-frame by means
of another three world coordinates as for example three Euler angles.

Having three coordinates describing the location of the ball socket joint (S) on the base
plate and another three for the location of the S-joint on the end-effector leads to six
parameters for each joint link train. Adding one parameter more for the encoder offset!
results in the proposed 42 parameters.

! Replacing ineq. 3.8 L, by L, + LO,, where L, is the transducer reading and L0, the offset.
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3.3.3 Conclusion

The system of equations 3.8 apparently seems to be quite simple. Nevertheless, due to
its complexity the direct problem remained unsolved for many years. In a remarkable
work Husty [94] was able to find a univariate polynomial of 40th degree. It still remains
some open questions that await resolution such as for example the analytical expression
of the factors of the 40th order polynomial or the question of whether there is a
configuration where all of the 40 solutions are real. By numerical search never more

than 16 real solutions could be found.
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3.4 Models for the Delta robot

3.4.1 Introduction

In this section two different calibration models for the Delta robot will be developed. A
model considering all possible geometrical deviations would have 138 parameters. To
apply eq. 3.3 a S-pair has to be modeled as a SR joint-link train in order to get rid of the
isolated degree of freedom!. However, the increase of accuracy gained by considering
errors in passive joints is very small compared to the tremendous increase of the
mathematical complexity [Wang 92]. This was one of the reasons to search for concepts
allowing to produce S-joints as perfect as possible (chapter 2) in order to mode! them
without errors. In this case the number of independent parameters drops according to
table 3.1 from 138 to 54. This model will be referred to as model 54. Assuming further
that the spatial parallelogram remains perfect, model 54 can be reduced to a model with
24 parameters. This model 24 will finally be converted to the nominal model [Clavel
91].

The following remarks about models 54 and 24 are important:

- The parameterization for the two calibration models should be the same. In other
words 24 parameters have to be identically chosen for both models. This prevents
from transforming a set of parameters into another, and makes the different
models easier to compare.

- Rotation and translation are treated separately as in ordinary vector analysis,
which is the traditional way to establish models for the Delta robot [Sternheim 87,
Pierrot 90, Clavel 91, Codourey 91, Devaquet 92 and Guglielmetti 94].

- As shown in figure 3.9 the end-effector will be attached to the base-plate for the
parameterization. This will allow the reduction of model 54 to model 24 with the
end-effector shrinking to a single point (fig. 3.11).

- In order to maintain proportionality (paragraph 3.2.2) special care is taken about
three nearly parallel lines. These three lines are the axis of the motor, the line
connecting the proximal S-joints and the line joining the distal S-joints. For
model 24 these three lines have to be exactly parallel in order to maintain the
spatial parallelogram.

1 For "isolated degree of freedom" see paragraph 1.6.2 (Stewart Platform).
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The thirty joint angles of the passive S-joints (excluding the six isolated degrees
of freedom) are variables depending on the robots configuration. The closure
equations are established in such a way that these depending variables don't
appear. This corresponds to the simplification introduced by Clavel [91]
compared to the model of Sternheim [87].

Instead of working with six closure equations for each forearm subchain, the sum
and the difference of the two equations of a pair of forearms will be used to
represent one main chain.

3.4.2 Parameterization

End-
effector

proximal
S-joints

Fig.3.9a:  Parameterization of a Delta robot without geometric deviations.
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. |
End-effector
attached >

to the base ¢ 0] P
O X
O % =
=z
Base ath

Zp distal
S-joints

End- > B, 4
effector ' proximal

S-joints

%/

@
sYa
“ 4d. I'a;

Fig. 3.9b:  Parameterization of one joint-link train of the Delta robot with geometric

deviations. The end-effector is thought to be attached to the base. For
convenience the frames {0},{1} and {2} are represented in a translated
position. Actually, they are related by pure rotations to the {B}-frame.

According to figure 3.9a and 3.9b the following points, lines and frames are defined:

B, ,:

Cia:
£y, 4,
B, G
0;:

0,12
{B}:
{P}:
{0}:
{1}:

{2}:

Center points of the S-joints attached to the end-effector -> distal S-joints
Center points of the S-joints attached to the arms -> proximal S-joints
Connecting strait section from B, to B,, and C; to C,,, respectively
Mid-point of the section £, and {,, respectively

Projection point of C, on the motor axis

Points on the motor axis located in distance ¢, /2 of O,

The base frame {B} is arbitrarily fixed to the base

The moving frame {P} is arbitrarily fixed to the end-effector

The z-axis of the distal S-joint frame {0} is parallel to £,

The z-axis of the motor frame {1} is parallel to the motor axis

The twisted motor frame {2} is the frame {1} twisted by the motor angle
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Position vector and rotation matrix containing the six world coordinates

ER = Rot3(z,Y)- Rot3(y,B) - Rot3(x, )

Rotation matrix describing the orienta-
tion of the {P}-frame relative to the
{B}-frame by means of fixed angles

P={x,yz}

Vector describing the origin of the {P}-
frame relative to the {B}-frame by
means of three Cartesian coordinates

Rotation matrix containing the three joint coordinates

1Q, = Rot3(z,6,)

Rotation matrix containing the motor
angle 6,

Scalars, vectors and rotation matrices contatning the 54 geometric parameters:

5T="T. = Rot3(z,9,)- Rot3(x,q,)

Rotation matrix describing the {0}-frame]
relative to the {B} and {P}-frame,
respectively, which is done by means of

DH -parameters for = 1 axes

AT, = Rot 3(x,Aq,)- Rot3(y, AB,)

Rotation matrix describing the {1}-frame
relative to the {0}-frame by means of H-

parameters for = |l axes

D.D,}

D, ={D

xi *

Vector pointing from the point B, of the

attached end-effector to the point O, on
the motor axis

La,; = La,cos(60,)

’La: ={La,,La,.0} with _
Lay, = La,sin(60,)

xi? v

Vector pointing from the point O, to the
point C, including the encoder offset 60,
and the arm length Lag,

oF _ bV Vector pointing from the origin of the
b, = {bxi’b.w’ ='} frame {B} and {P}, respectively, to the
point B,
— h - i
°d = {O, 0.d, }T Vector whose z-component is half as

long as line 2,

AT, ={Ac,.aC,.aC,}

Error vector defined as the difference of
the vector OC:; (=C,, — 0,,) and the
vector OC; (=C, - 0,).

Lb,

t

Average length of the forearms

ALb,

Half the difference of the forearms'
lengths

Table 3.10: Parameterization of one of the three R(25/2S) joint link train of the Delta

robot
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3.4.3 Model 54

According to Hiller [88] the forearms as a "characteristic pair of joints" of the type
"distance of two points" will be removed . This leads to a set of six closure equations
which are free of dependent passive joint variables. To close a joint link train it is
claimed that the Euclidean norm of the vector between the proximal and the distal S-joint
is equal to the length of the corresponding forearm.

The two closure equations for one main joint link train i can be written as:

(ﬁ —C-i.l..Z )T ’ (ﬁi,l.l - —Ci,l..Z) = (Lbi % ALbi)z

0.2
with
i=1..3 (3.9

For simplicity the leading sub- and superscript will be dropped and eq. 3.9 rewritten as:

(CB:+ad,)" -(CB: +Ad,) = (Lb, + ALb,)’ i=1..3 (3.10)
(CB.-2d,) - (CB: - Ad)) = (Lb, - ALb,)’ i=1.3 (3.11)
with

C_B' — (_B_il +§i2)_(6il +Ei2) and A& — (Eu ‘Eiz)_(éil —t-iz)

2 2

By addition and subtraction of eqs. 3.10 and 3.11 to and from each other, model 54 is
created, which is well adapted to the Delta robot:

GI: CB-CB:+Ad-Ad, = Lb? + ALb®

G2: CB/ - Ad, = Lb*ALb,
ith
S i=1.3 (3.12)
CB.'=P+R'T,~'b;°Ti'(bi+Di+ATi'Qi'Laf)

a-T

i

Ad.=R-

i i

=
!

Adding and subtracting the closure equations of a forearm pair leads to splitting of the
less adapted set of closure equations given in eq. 3.9 into two more characteristic sets of
closure equations G1 and G2. Two similar sets of closure equations will be found for
the Argos structure (paragraph 3.5.3).
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3.44 Model 24

To establish model 24, model 54 is simplified by assuming that the end-effector
remains perfectly parallel to the base frame. In other words: The spatial parallelogram
remains perfect. This is the same assumption on which the nominal models of
Sternheim [87] and Clavel [91] are based. It can therefore be said that model 24 is an
extended nominal model. Such a model for the Delta robot containing 18 parameters
was introduced by Zobel [93]. For completeness (paragraph 3.2.1) three encoder offsets
(table 3.10: 60.) and the three tilt angles of the motors (table 3.10: ¢;) have to be
added. The encoder offsets have a major influence on the resulting accuracy, as can be
seen in the identification phase in chapter 5. The tilt angles become particularly
important for the linear Delta [Stevens 94], where two of these three angles are
inclined. Therefore a complete model has 24 parameters. Any extended nominal model
doesn't allow errors in the spatial parallelogram, thus the end-effector is always
perfectly parallel to the base plate:

R=1 (3.13)

where I is the 3x3 identity matrix.

The number of world coordinates is reduced from six to the three Cartesian coordinates
describing the origin of the {p}-frame. This simplification is only valid if the three lines
given by the axis of the motor, the connecting line of the proximal S-joints and the
connecting line of the distal S-joints stay perfectly parallel to each other. For that 18
parameters will be fixed to their nominal values.

AT =1, AC, =0, ALb, =0 Parameter set P1 i=1.3 (3.14)

Substituting eq. 3.13 and eq. 3.14 in eq. 3.12 shows that the b,.- as well as the d.-
Vector containing all together another 12 parameters vanish.

b,,d. = vanish Parameter set P2 i=1..3 (3.15)

Geometrically, this corresponds to the reduction of the end-effector to a single point
and the degeneration of the R(2S/2S)] joint-link train to a R2S chain (fig. 3.11). A
further consequence of equation 3.15 is the degeneration of the second set of egs. G2
given in 3.12 to identity O =0 whereas the first set G1 leads to model 24:

C_BiT . C_B_i = l'b,'z
| with i=1.3 (3.16)

@;=?—Ti-(ﬁi+a-ﬁ.~)




Modeling

33

This model can be applied to the Delta robot assuming that its end-effector always stays

perfectly parallel to the base.

<P

End—effectorjE 3

{pif

proximal
S-joint

Fig. 3.11:  Geometric interpretation of model 24 as a spatial 3[R2S] structure

3.4.5 The nominal model

To convert model 24 into the nominal model proposed by Clavel [91], the part of table

3.10 containing the geometric parameter will be rewritten as:

Scalars, vectors and rotation matrices containing the 6 geometric parameters:

T. = Rot3(z,6,)- Rot3(x,1/2)

for a symmetrical Delta robot:
0, =2*(i-1)*n/3 i=1.3

D.={R 0,0} R=R, — R, the difference between the

' radius of the base and the end-effector
La; ={La,0 O}T unique arm length and no encoder offset
Lb.=Lb unique length of the forearms

Table 3.12: Parameter collection for the nominal model derived from table 3.10

Substituting table 3.12 into eq. 3.16 leads to the nominal model suitable for the Delta

mock-up.
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3.4.6 Conclusion

In this section two complete and proportional calibration models with 54 and 24
independent kinematic parameters for the Delta robot were established. As shown in
chapter 5 and 6 the difference of the complexity of these models is enormous. A
possible question is whether there is another model between model 54 and model 24
with an intermediate mathematical complexity. However, in spite of an intensive

search, no such model could be found.

Several characteristic properties based on the chosen parameterization of model 54 are
listed below:

a)  The first set of closure egs. G1 contains model 24, whereas the second set G2 will
degenerate to identity (eq. 3.12)

b) Only 30 of the 54 parameters have an influence on the orientation of the end-
effector. These 30 parameters could further be split into two subsets:

c¢) The generating set P1 contains 18 parameters of magnitude A reflecting small
errors in the joint-link train (eq. 3.14)

d) The amplifying set P2 contains 12 parameters of magnitude 1 describing the
dimensions of the end-effector and the distance between the forearms (eq. 3.15)

These two sets are related in an interesting way: If P1 is considered to be zero, P2 has
no influence on the pose of the end-effector. It can be said that the set P2 cannot
generate pose errors by itself, but if P1 is not zero, it will amplify them. In figure 3.13
this is represented symbolically by a simple triangle.

WPI

P2

Fig. 3.13:  Symbolical representation of the relation between the parameter set P1
and P2.

From figure 3.13 it can further be concluded:

- Variation of P1 affects the orientation much more than variation of P2. Thus, P1
is much more sensitive to orientation errors than P2. This shows that efforts to
build Delta robots with the smallest possible orientation errors in the end-effector
pose (cf. chapter 2) have to be concentrated on the 18 parameters of set P1.

- The fact that a parameter set is less sensitive to the resulting error of the end-
effector can be also stated inverse. "A parameter which causes small end-effector
errors over the whole working volume is nearly unobservable in the identification
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phase"”. For the identification phase (paragraph 5.4.3) the parameter of set P2 will
therefore be fixed to their nominal values and only the remaining 42 parameters
will be identified.

- The bigger P2 becomes, the smaller is the orientation error. This is useful for the
choice of the nominal parameters for an application of the Delta robot aiming at
being very precise (e.g. milling center or measurement robot). In this case, P2
should be chosen as big as possible with respect to the remaining parameters. A
larger distance between the forearms for example will decrease the resulting
orientation error of the end-effector.

3.5 Models for the Argos structure

3.5.1 Introduction

In this section two different calibration models for the Argos structure will be
developed. In contrast to the modeling performed so far, non-arbitrarily located base
and moving frames will be used, allowing to solve the direct problem without changing
the parameterization as will be shown in chapter 6.

In the following section the independent parameters are always given under the
assumption that the base frame {b} and moving frame {p} are not arbitrarily chosen
(eq. 3.3: F=0).

According to eq. 3.3 a model taking all design errors into account would have had 126
parameters. Neglecting the errors of the spherical joint leads to 57. Attempting to
establish this model shows that the dependent joint variables of the six passive revolute
joints cannot be bypassed. Therefore, twelve closure equations for the twelve unknowns
would be needed.

The fact that the pantograph behaves in a perfect manner, i.e. the S-joints attached to it
are moving on a circle is introduced as a further simplification. This assumption is
justified by the efforts described in chapter 2. This leads to a spatial 3[2RS] structure
similar! to the ones of LeeK [88] or Magnani [95]. The model of this structure will be
referred to as model 27 according to the 27 parameters needed to be complete.

1 Similar in the sense of having the same solution of its direct problem.
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Claiming that the three S-joints move on the same sphere leads to a model with 9

independent parameters.

A last simplification step to get the nominal model of the Argos mock-up is made by

assuming that the axes of the motors as well as the vectors pointing to the S-joints stays

perfectly perpendicular to one another. Some guidelines about the calibration models 27

and 9 are listed below:

The parameterization for all three models should be the same.

Homogenous matrices will be used for the spatial model 27. They will degenerate
to pure rotation matrices for the remaining two spherical models.

The pantographs assumed to be perfect will perform a circle about a virtual axis
orthogonal to the pantograph plane (fig. 3.14). For modeling reasons a pantograph
is therefore replaced by a single rotative joint on this virtual axis.

Twelve joint angles are passively moving and therefore depending variables. The
closure equations are established without dependent variables.

All distances are made dimensionless by dividing by the nominal radius R of the
spherical structure.

3.5.2 Parameterization

Fig. 3.14a: Parameterization of a Argos structure without geometric deviations.



Modeling 57

Fig. 3.14b: Parameterization of one joint-link train of the Argos structure with

geometric deviations. The pantograph is thought to be replaced by one
virtual R-joint. Thus, the modeling is done with the 2RS joint-link train as
represented in gray bold lines.

According to figure 3.14a and 3.14b the following points and frames are defined:

{p}:

{0}:

Center points of the S-joints assumed to be perfect;
Projection points of B; on the axes of the virtual R-joints;

The base frame {b} is attached to the base with its x-axis coincident with the
first motor axis and its z-axis coincident with the common normal between the
first motor axis and the second;

The moving frame {p} is attached to the end-effector in such a way that all
three S-joints are located on a unit-sphere around its origin. Furthermore, the
x-axis of the {p}-frame points to B, whereas B, lies in its xy-plane;

The motor frame {0} is attached to the motor axis. The {O}-frame of the first
chain is coincident with the frame {b};

The twisted motor frame {1} is the {0}-frame twisted by the motor angle;

The virtual R-joint frame {2} is attached to the axis of the virtual R-joint.
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Homogeneous matrix containing the six world coordinates:

ﬁ?=Trans4(x,y,z}Rot4(x,191)Rot4(y,1‘}2 }Rot4(x,9,)

Homogeneous transformation matrix
describing the moving frame {p}
relative to the base frame {b}
containing three Euler angles and
three Cartesian coordinates

Rotation matrices containing the three joint coordinates:

°Q, = Rord(x, )

Homogeneous rotation matrix
containing the motor angle

Homogeneous matrices, vectors and scalars containing the 27 geometric parameters:

TSZ = Trans4(0,0,AC,)- Rot4(z,®,);
bS, = Rot4(x,2,)- Trans4(AA,,0,AC;)- Rot4(z, ®,

o oo

| Ll
Il

Ll

Homogeneous transformation matrix
describing the motor frame {0}
relative to the {b}-frame

DH-parameters for = | axes!

'T, = Rot4(x,0,)- Trans4(Aa,,0,Ac,)- Rot4(z, ;)

Homogeneous transformation matrix
describing the virtual joint frame {2}
relative to the twisted motor frame
{1} using DH-parameters for = L
axes.

bw =S..{1,0,0,1)

Unit vector lying on the motor axis

rg, ={1,0,0,1}";
*¥, = Rot4(z,9,)-{1,0,0,1}";
*¥, = Rot4(x,0,) Rot4(z,9,)-{1,0,0,1}";

Unit vector pointing from the origin
of the moving frame {p} to the point
B,, the center point of the S-joint.

AR, = {AR,,0,0,1};

Vector pointing from the origin of
the frame {2} to point C, , the
projection point of B, on the axis of
the virtual R-joint

R,

Radius of the circle of the perfect
pantograph

Table 3.15: Parameterization of one of the three 2RS-joint link trains {i} of the Argos

structure

1As mentioned in paragraph 3.2.2 DH-parameterization does only define how the origin of the

consecutive frame is defined and nor which axis of the frame have to be located on the joint axis.
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3.5.3 Model 27

According to Hiller [88] the virtual link between the virtual R-joint and the S-joint will
be removed as “characteristic pair of joints" of the type "distance of a point from a
line". The resulting closure equations are free of dependent, passive joint variables.
Two different claims have to be satisfied:

The first claim is that the vector between C, and B, must stay perpendicular to the axis
of the passive R-joint (*W,) leads to a first set of closure equations (G1) which will be

established in the {b}-frame:

Gl: “u’’CB, =0 i=1.3 (3.17)
with
_ T 1
T, = ({10,0,1}-{0,0,0,1}) ={1,0,0,0} i=1.3 (3.18)
5, =459Q4T 1, i=1.3 (3.19)

S T2AR, i=1..3 (3.20)

t

The second claim is that the Euclidean norm of the vector between C, and B, must be
equal to the radius R. of the corresponding circles in the pantograph planes which leads

to a second set of closure equations (G2). This set is established in the {b}-frame, too:
G2: "CB/’CB: = R? i=1.3 (3.21)

Model 27 is now established by eq. 3.17 and eq. 3.21. For simplicity the leading sub-
and superscript will be dropped:

G: u -CB:i=0
G2: CB/ -CB; = Ri2

->| with i=1..3 (3.22)
5 = 5-Q-T-{L000)
CB: = %'Vi — §16: =z A—;

This model can be applied to the Argos structure assuming that the pantographs stay in
planes and that the S-joints attached to it describe perfect circles of radius R,.

1 2ﬁi is a free unit vector. Such a vector is constant in length and direction and can freely be moved in

space. Its homogeneous component is zero (translations don't affect a free vector). A free vector stays in

contrast to a bounded vector (to a point) with its homogeneous component equal to one.
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3.54 Model 9

This model is a simplification of model 27. It is based on the following two

assumptions:

1. The structure is perfectly spherical. All three S-joints must remain on a single sphere
of radius one about the virtual rotation center. Geometrically, this simplification can

be interpreted as a spherical 3[RPS] structure (Fig. 3.17). The number of indepen-
dent parameters for a complete model is 12 when calculated according to eq. 3.4.

2. The motor axes are located on the pantograph planes. To model an arbitrarily located
pantograph plane relative to the motor axis is unrealistic in relation to the already

introduced simplifications.

The first simplification claims that the virtual rotation center of the structure stays
fixed:

{x.y.2}' =0 (3.23)

The number of world coordinates is reduced to three Euler angles describing the
orientation of the {p}-frame relative to the {b}-frame. This simplification is only valid
if 9 parameters are set to their nominal values and 3 constraints are fulfilled:

1. Chain: Aa,=Ac,=AR,_ =0, R*+AR, =1
2. Chain: AC,=Aa,=Ac,=AR, =0, R’*+AR’ =], (3.24)
3. Chain: AA,=AC,=Aa,=Ac;=AR, =0, R’>+AR,*=1,;

The second simplification claims that the virtual link stays perpendicular to the motor
axis and the perfect circles are great circles on the sphere:

Y= R=1 AR, =0 i=1.3 (3.25)

Substituting eq. 3.23, 3.24 and 3.25 into table 3.15 shows that all transformation
matrices are converted into pure rotation matrices, which allows dropping of the
homogenous representation (tabie 3.16). Furthermore, the second set of egs. G2 in eq.
3.22 degenerates to identity 1=1. If eqs. 3.24 and 3.25 are substituted into the first set
G1 given in 3.22, model 9 can be found after some manipulations. For simplicity the
leading sub- and superscript will be dropped. The vectors u,,¥; as well as the rotation

matrix R are given in table 3.16:

=i

—T = _
> | W R-¥v,=0 i=1..3 (3.26)




Modeling 61

This model can be applied to the Argos structure assuming that its virtual rotation
center stays stationary, thus, that the structure is perfectly spherical. A second
simplification is the assumption that the motor axis lies on the pantograph plane and the
the three circles traced by the S-joints are great circles.

Rotation matrix containing the three world coordinates

— R t t' t . d .b.
R = Rot3(x,9,): Rot3(y,9,)- Rot3(x,8,) o ;;%Tn;f?a;)é escribing

Rotation matrices containing the three joint coordinates

= Rotation matrix containing
Q= Rot3(x, 0!,-) the motor angle

Rotation matrices, vectors and scalars containing the 9 geometric parameters

§ =L §, = Ror3(z.®,) § = Rot3(x.2;) Rot3(z,®@,) | poration matrix describing
= _S.5. _ T Vector perpendicular to the
U, =§,-Q; Rot3(x,a0,)-{0,1,0} twisted pantograph plane

v,={10,0}"; ¥, = Rot3(z,9,)-{1,0.0}"; J‘f)?;l; vector pointing to the S-

¥V, = Rot3(x,®,)- Rot3(z,9,)- {1,0,0};

Table 3.16: Parameter collection! for the model 9 derived from table 3.15

Figure 3.17 shows a geometric interpretation of model 9 as a spherical 3{RPS] structure
with perfectly aligned spherical prismatic joints (P). Instead of actuating the R-joints,
the spherical P-joints could be actuated by driving the pantograph in a push-pull
manner with a conical gear wheel on its second R-joint [Vischer 95]. This arrangement
would correspond to a spherical "Stewart”-Platform with its planar complement shown
in figure 3.2.

1A more detailed definition of the different parameters of model 9 can be found in [Bubendorf 96).

However, the model presented here is slightly changed in order to remove a mathematical singularity.
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Fig. 3.17:  Geometric interpretation of model 9 as a spherical 3[RPS] structure.

3.5.5 The nominal model

For the Argos mock-up the motor axes as well as the vector pointing to the S-joints are
arranged orthogonally. Thus, six angles of the model 9 are fixed to 90 degrees to get the

nominal model:
2. Chain: ®,=¢,=";

(3.27)
3. Chain: Q,=®, =0, —_—%, o, _—__%;

The nominal model is given by the substitution of table 3.18 into eq. 3.26.

Rotation matrices containing the three joint coordinates

Q =Rot3(x.a,). Q.= Rot3(y.0,), Q, =Rot3(z,a;) |porauion Taiax containing

Rotation matrices, vectors and scalars containing the 3 geometric parameters

= _& ) T Vector perpendicular to the

U = Q- Ror3(x.a0)-{0,1,0} twisted pantograph plane

1, = Q, - Rot3(y,a0,)-{-1,0,0}"

i, = Q, - Rot3(z,00,)-{-1,0,0}"

¥ = T. ¥ — T. § = T, Unit vector pointing to the S-
- - ’ ’ = ’ 9—1 s . . p gto ¢

v, ={1,0,0}; v,={0,1,0}"; ¥v,={0,0,-1} joint

Table 3.18: Parameters of the nominal model derived from table 3.16 with the aide of
eq. 3.27
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3.5.6 Conclusion

In this section two proportional and complete calibration models for the Argos structure
were proposed. As for the calibration models of the Delta robot the first set G1 of
model 27 (eq. 3.22) contains model 9 whereas the second set G2 degenerates to
identity.

3.6 Error propagation in serial compared to parallel robots

3.6.1 Introduction

In this section an application of the developed calibration models is shown in order to
simulate the pose errors of the end-effector caused by estimated tolerances of the
mechanical parts of the robot. In figure 3.19, seven poses of Delta's end-effector
following an elliptical trajectory are shown with its six forearms subjected to length
deviations. As expected orientation errors at the end-effector resuit.

Fig. 3.19:  Simulation based on model 54 of the end-effector's pose errors of the
Delta robot subjected to geometric deviations in its structures.

The aim of this section is to compare by simulation the accuracy at the end-effector of a
serial SCARA robot and a paralle] Delta robot assuming the same tolerance field for the
mechanical parts.

3.6.2 Results from simulation

The following criterion for equivalence of the two robots has been introduced by Clavel
[91]:
a,+a =L +L, (3.28)

The nominal length of the two arms of the SCARA must be equal to the sum of the
nominal length of the forearm and the arm of a Delta robot. The arm of the Delta mock-
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up has a length of 120 mm and the forearm of 240 mm. The arm segments of the
SCARA were chosen to be 200 and 160 mm long, which satisfies eq. 3.28. The
calibration model with 16 parameters for the SCARA robot is given in paragraph 3.2.3,
whereas for the Delta robot model 54, presented in paragraph 3.4.3 is used. As
tolerances equally distributed random values within an estimated tolerance field were
chosen. The chosen field of tolerance is:

linear: +0.05mm

angular: +£0.1° (3-29)

O actual position

commanded
position

Fig. 3.20:  Error between the commanded and actual position of the rod's tip

According to figure 3.20 a rod of 50 mm was fixed to the end-effector. With the tip of
this rod the robot should follow a xy-plane located in the middle of its working volume.
Using the nominal model the corresponding joint angles for a point in the plane were
calculated. These joint angles were used to calculate, with the help of the calibration
model, the real pose of the end-effector in space. The actual position of the rod's tip was
then compared to the commanded position. This kind of simulation shows the ability of
a robot, with design errors to follow a trajectory. A typical example for this kind of task
is a CNC-milling center. Thus, the simulation was performed according the flow

diagram represented in figure 3.21:
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commanded Vector 6x1 of the
joint angle actual pose of the
; tor 3x1 -
commanded solving the inverse | * " x solving the direct end-effector
position vector problem of the problem of the
3x1 for the nominal model calibration model
end-effector
Calculation
of the tip
position
Norm of the
position
erTor vector

Fig. 3.21:  Flow diagram for the simulation of a milling center

The resulting norm of the position error is shown in Figure 3.22:

Scara Delta

all axes are labeled in [mm]

Fig. 3.22: Resulting position error of the rod's tip for a Scara and Delta robot
scanning a plane.

Figure 3.22 shows that the variation is about 0.3 mm for both robots whereas the mean
values are different, with 0.5 mm for the Scara and 0.2 mm for the Delta robot. These
results confirm the conclusion that the accuracy of parallel structures is of the same
order of magnitude as for comparable serial structures [Lin 89, Wang 92]. It seems
however that the mean value for parallel structures is smaller than for serial ones, which
is slightly advantageous.

The situation is different if a measurement robot should be simulated. In this case a
piece to be measured, e.g. a cube, is lying in the workspace of the robot. The robot
establishes physical contact with the cube via a touch probe. The position of the touch
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probe is then calculated with the nominal model in order to know where the touched
point on the surface of the cube is located in space. This situation is summarized in the

flow diagram of figure 3.23.

mesured calculated position
joint angle of the touch probe

- 1 - - i
touched solving the inverse vector 3x solving the direct in space 3x1
position problem of the problem of the
vector 3x1 calibration model nominal model

b?<

Norm of the
position
€ITor vector

Fig. 3.23:  Flow chart for the simulation of a measurement robot

3.7 Conclusion

In this chapter some fundamental properties for good parametric calibration models
were discussed. These theoretical tools were used to establish models for the Scara,
Stewart, Delta and Argos structures. The importance of the choice of parameters is not
to be underestimated and modeling is therefore a very important step in calibration.



4. Measurement

4.1 Introduction

In this chapter experimental set-ups for the collection of measurement data for the
calibration process will be proposed for both the Delta and the Argos structure. For
identification some redundant information about the structure to be calibrated must be

provided, which is the principal goal of the measurement step.

The measurement devices can be grouped into two classes such as internal and external
transducers. Internal transducers are devices which belong to the robot such as its
encoders for example, whereas external transducers are added only during the
measurement phase such as a for examples a 3D-measuring machine. The redundant
information is gained by establishing a loop between any link of the robot and the base.
Particularly interesting is the closure between the end-effector and the base. This

particular loop is referred to as the measurement loop.

The measurement loop can be established in an active way using for example a system
of external theodolites or in a passive way using passive joints of high precision for
examples. A further grouping into contact and non-contact measurement is possible.
The advantage of non-contact measurement is that the measurement device doesn't
transmit contact forces to the end-effector. Thus, its pose is not disturbed by the
presence of the measurement system. This becomes particularly important if the
measurement should be performed while the robot is in motion (dynamic

measurement).

How much information can be gained for each measurement point depends on how
many times the measurements are redundant. If all six degrees of freedom of the end-
effector are actively measured the full pose of the end-effector is available, which leads
to six error equations for each measured point. Thus, full pose information is six times
redundant. Partial pose information is available for a robot sliding with the tip of its
end-effector on a plane. Knowing that each point lies on this plane, a single error

equation is gained per point taken, which corresponds to a single redundancy.
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For the first group using external transducers many propositions can be found in
literature. Further added to this group are set-ups using any kind of pre-measured
fixtures [Tanner 90, Zobel 93, Hollerbach 93] such as for examples a block with holes
of precisely known position [Veitschegger 87]. Van Brussel [90], Felder [90], Tradt
[91] and Mooring [91] have given good overviews of different commercially available
systems. Non-contact measurement devices such as the SMART-system of Leica
[Markendorf 90, Kyle 93a] is very expensive (250'000 Swiss francs). The SMART
system is based on a Laser interferometer, which can be deflected over two mirrors. It
can track the position of a corner cube fixed on the robot's end-effector up to a speed of
4 m/s and accelerations of 2 g with a resolution of 0.7 arcseconds and 1.3 micrometers.
The SMART system is comparable to the 3D-Laser tracker from Chesapeake. A system
without interferometer called Lasertrace has been developed at the University of Surrey
and is commercially available from Automatic System Laboratories (ca. 40'000 Swiss
francs) [Parker 87, Mayer 94]. A system in addition capable of measuring the
orientation of the end-effector without contact was developed by Prenninger [93]. Other
non-contact systems are based on two motorized theodolites as for examples the ATMS
or SPACE system by Leica [Kyle 93b]. The position measurement is based on
triangulation of a target fixed on the end-effector whereas the tracking is performed
with the help of a CCD-camera. This kind of system is about 10% - 20% more
expensive than the already mentioned 3D-Laser tracker SMART. Selspot II is a system
based on CCD cameras sold by the Swedish company Selspot. This small selection of
propositions from literature for measurement devices shows already that there is no
single low-cost device covering all the needs. Since this work is restricted to static
calibration only, there is no need for non-contact measurement. This allows to use
coordinate measuring machines and digital probes, which will be used for the
experimental set-up of both the Delta and the Argos structures.

For the second group without external transducers [Wampler 92, Sayeh 94], Hornick
[91] proposed to use a single flat plane to establish redundancy in the transducer
readings of the robot [Zhong 95]. Using several planes for a serial robot, calibration
was successfully simulated by Flury [94]. Khalil [95] proposed to lock the end-effector
of a 6R robot to the base in the eight different, possible configurations. Benett's [91]
method for the calibration of a redundant manipulator consists of fixing the robot's end-
effector to the base and moving this closed-loop into different configurations. Driels
[91] proposed to close the measurement loop to the base by a rod with ball-socket joints
at both of its ends (ballbar). All these set-ups have in common their strong dependence
on the robots topology and its degrees of freedom. The number of passive set-ups using

no external measurement devices is proportional to the degrees of freedom of the robot.
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Non-contact set-ups as for instance with a linear air bearing cancels partially the
advantage of a low price. Two propositions, belonging to this class, were built for the

Delta robot, namely the plane/sphere set-up and the short-cut set-up.

The accuracy for the different measurement units given in this chapter are calculated
from the specifications given for the different transducers and under the assumption of a
perfect geometry. In fact, it would be necessary to calibrate each measurement unit first
and to measure the resulting accuracy. Thus, the given values correspond to the upper

bound of accuracy.

4.2 Set-ups for the Delta mock-up

4.2.1 Introduction

In this section an external full-pose measurement system for the mock-up of the Delta
will be introduced. The aim is to provide a measurement system which is able to
measure large changes of the end-effector's position, typically of the length of the
forearm and small changes of the end-effector's orientation (< *5°). The chosen
solution consists of a 3D-measuring machine where the end-effector of the mock-up is
attached to the z-axis by means of a ball-socket joint, still allowing small changes of the
orientation. These changes are measured by three digital probes, fixed on the z-axis of
the measuring machine. Furthermore two measurement set-ups without external sensors

are shown.

4.2.2 Position unit

Instead of adapting the measuring machine to the mock-up, the dimensions of the
mock-up were optimized to fit an available 3D-measuring machine as shown in figure
4.1. The machine, a Validator 10, is built by the Swiss company TESA (Brown&Sharp)
and has the following specifications:

Measurement volume x,y,z 300x300x120 mm
Resolution 5 um
Accuracy (on 300 mm) *10 um

The height is too low for the Delta mock-up and therefore three different base frames
{B} were fixed at different heights of the mock-up (fig. 4.3). The measurement volume

of the machine can be manually varied in the z-direction. The interface to a PC was
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established by a digital data acquisition board (PC-DIO-96) of National Instruments
and within the programming environment LabView™ [Egloff 95].

Fig. 4.1: Optimization of the dimensions of mock-up which has to fit underneath
the measuring machine.

4.2.3 Orientation unit

Three linear digital touch probes TESA-GT22C orthogonally arranged to each other,
are used to measure three fixed angles defining the orientation of the end-effector (fig.

4.2) with the following specifications:

Measurement volume roll, pitch, yaw +4,7° each
Resolution "
Accuracy (within £ 1.9°) +15"

The interface to the computer is established via an RS 232-link, which is supported by
LabView™ [Egloff 95].
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fixed to the z-axis of
the measuring machine

end-

y cl'l'cclur. _\;
4.7° | i -, (5
i £ N

Spherical joint

Fig. 4.2: Orientation unit for small changes

4.2.4 Full-pose measurement set-up

The mock-up is clamped on the cross table of the measuring machine by means of three

solenoids as shown in figure 4.3

Fig. 4.3: Full-pose measurement set-up for the mock-up of the Delta robot

To align the measuring machine as well as the orientation unit with respect to the

mock-up, the forearms must be removed and the z-axis of the measuring machine is
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brought into physical contact with one of the three reference frames whereas the end-
effector, which is still fixed to the z-axis, can be twisted until it fits into the V-grove

and to the plane of the reference frame (fig. 4.4).

measurng machine

V-grove

plane B
reference frame 2

Fig. 4.4: Aligning the external measurement devices relative to the mock-up

4.2.5 Set-up in another configuration

Some design parameters cannot be observed (set P2, paragraph 3.4.6) using the
configuration where the end-effector stays parallel to the base. As shown in figure 4.5
changing the configuration space allows the design parameters given in the P2-set to be
observed. This set-up requires external measurement devices, too. In the chosen
configuration the orientation of the end-effector is changing considerably and the
measurement unit proposed in paragraph 4.2.3 has to be replaced by the unit proposed

in paragraph 4.3.3.
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Fig. 4.5: The observability of the kinematic parameters changes for different
configuration spaces. The configuration above is the same as solution with
strongly varying orientation shown in figure 6.3.

4.2.6 Plane/Spheres set-up

The plane/spheres set-up uses no external measurement devices. During the data
acquisition the end-effector is restricted to follow a plane and a sphere, respectively.
This constraint reduces the degrees of freedom of the Delta’s end-effector to two. Thus,
the set-up gets redundant with respect to one encoder reading, which will be used to
identify the kinematic parameters. According to Hornick [91] the plane can be posed
arbitrarily in the working volume of the robot. However, due to the topology of the
Delta robot and for practical reasons, the plane is chosen to be approximately parallel to
the base. The pose of the robot's base frame {B} relative to this plane is still not
restricted with respect to the three remaining degrees of freedom (x,y,¢). Thus, two

spheres having their centers lying in the plane were added by means of two ballbars.
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plane set-up two spheres set-up
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pizmc first hole

Fig. 4.6: The plane/spheres set-up

Instead of passive [Driels 91 Sayeh 94] also active ballbars can be used as proposed by

Goswami [93] for partial pose measurement.

4.2.7 Short-cut set-up

The spherical joints of the Delta robot can easily be disassembled. Using the same
mechanical parts an RSSR-loop with one degree of freedom can be built (fig. 4.7)
[Hunt 78]. The two encoders measure the input and the output angle of such kind of a
loop. This way all design parameters of the entire robot with the exception of the end-
effector's dimensions can by identified successively without the use of external

measurement devices.
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Fig. 4.7: The short-cut set-up
4.3 Set-up for the Argos mock-up

4.3.1 Introduction

The claims for an external full-pose measurement system for the mock-up of the Argos
structure contrasts what was claimed for the full-pose measurement system for the
Delta mock-up. Small displacements of the position of the virtual center (< £3 mm)
must be measured, whereas the orientation varies considerably (< £ 60°). The chosen

solution is discussed in this section.

4.3.2 Position unit

Three linear digital touch probes TESA-GT130, which are orthogonally arranged to
each other (Fig. 4.8), are used to measure the small displacement of the virtual center of

the Argos mock-up with the following specifications:

Measurement volume x, y, z 6x6x6 mm
Resolution (limited by the electronic) 0.1 um
Accuracy (within = 0.8 mm) >*1.9 um

The interface to the PC is established via an RS 232-link, which is supported by

LabView™,
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Fig. 4.8: Position unit for small changes

4.3.3 Orientation unit

Figure 4.9 shows three incremental encoders Pewatron-PEH-20 with 2000 physical
increments which are orthogonally arranged (gimbal) in order to measure the large

orientation changes of the Argos end-effector with the following specifications:
Measurement volume (limitations due to the cables) >+ 70° each
Resolution 2.7

Accuracy no specification given

Custom-made counter boards based on a HP-HCTL-2016 IC and with a bandwidth up
to 12 MHz post-quadrature are used to read dynamically the three incremental
encoders. A parallel link to the PC is established by means of a digital data acquisition
board (PC-DIO-96) of National Instruments. This effort for dynamic data acquisition
was necessary because the Argos mock-up cannot be fixed easily at any measurement
point. Thus, the high resolution measurement devices are subjected to fast changes due

to the trembling of the operator.
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Fig. 4.9: Orientation unit for large changes

4.3.4 Full pose measurement set-up

The measurement device is pre-loaded by a spring in order to compensate its weight.

Fig. 4.10: Full pose measurement set-up
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4.4 Conclusion

In this section the experimental part of calibration was addressed by entering the vast
field of metrology. Four different external measurement units and two simple set-ups

using no external measurement device were presented.

Even if the field of measurement devices is extended allowing small contact forces, the
claim for cheep and accurate full pose measurement is difficult to reach. The reason is
that most of the low-cost and accurate devices measure only one degree of freedom
(DoF). Thus, intermediate mechanical parts of high precision have to be designed to

located these single DoF-devices with respect to each other, which increases the costs.

The design of two orientation measurement units was much more time-consuming than
the design of the translational units. This is not only due to the increasing effort for
imagination of orientation matters, but also to the more complicated shape of the
intermediate mechanical parts as well as to the smaller number of basic principles for

3D-orientation measurement.,

To conclude, the measurement step stays with its difficulty in no way behind the three
theoretical steps of calibration (modeling, identification and implementation) and good

know-how of this step is essential to develop powerful theoretical tools.



5. Identification

5.1 Introduction

In this chapter the kinematic parameters of the calibration models given in chapter 3
will be determined so that they match the measurement data obtained in chapter 4 most
closely. This is referred to as identification step. The identification step is the central
step in calibration. It deals with the actual storage phase of the robot's individual
deviations where adjustable parameters in the calibration model are adapted to fit the
real robot behavior as good as possible. A flow chart of the identification step is shown
in the figure 5.1:

Initial set of parameters
(for example nominal parameter set)

R

P

>

Identification method P’

N measurement > (for example Levenberg-Marquardt) Identified set of
points minimizing a suitable merit function _.| parameters

(for example square of the residuals)

=

-

Fig. 5.1: The identification step

Some kinematic parameters as for example the length of the forearm of the Delta robot
could be measured directly, whereas others as for example the length of a common
normal between two joint axes causes severe problems for accurate direct measurement.
Most of the kinematic parameters of the calibration models proposed in chapter 3
cannot be measured directly with a reasonable effort. This is the motivation to apply
indirect procedures such as identification to determine the kinematic parameters.

Parameter identification has been studied extensively in the field of numerical
mathematics and is widely applied in control theory and dynamic systems modeling.
Many of the standard techniques (annex C) for parameter identification [Schwarz 86,
Fletcher 87, Press 89] are directly applicable to the manipulator calibration problem
[Mooring 91). Different software libraries containing such standard methods for
identification are available on the market. In this work the optimization toolbox of
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MatLab™ will be used [Moler 92, Grace 92]. MatLab™ is a software dedicated to fast
matrix manipulation based on a library called LINPACK [Dongarra 79, Golub 83].
Advantages of the chosen software are the free access to the source code of the
optimization toolbox and a high reliability.

In a following section the problem of parameter identification for paralle] robots will be
stated. In order to show how the standard method for least-squares minimization given
in annex C can be adapted to the identification problem of parallel robots, a single-loop
structure will be introduced and simulations of different calibration methods presented
in a further section.

The rest of the chapter is dedicated to parameter identification of the two chosen
examples, the Delta robot and the Argos structure.

5.2 The calibration problem

5.2.1 Introduction

Identification of kinematic parameters of serial structures is generally performed on the
direct model, because it can be established very easily by multiplying homogeneous
matrices [Kim 87, Mooring 91, Schréer 93]. According to Whitney [86] this is referred

to as forward calibration .

For parallel robots the model is established in an implicit form given by closure
equations. Thus, the easiest description of a parallel structure is its implicit model.
Identification of parallel robots is therefore preferably done on the implicit model,
referred to as implicit calibration. This method has recently been applied by Wampler

[95].

Calibration using the solution of the inverse problem is referred to as inverse

calibration [Shamma 87].

The advantages of implicit calibration of parallel robots is that the calibration procedure
gets independent for each joint-link train if full pose measurement data are available
and if each single parameter to identify appears only in one of the closure equations.
The last claim is partially dependent on the type of parameterization chosen.

Taking the implicit model 42 of the Stewart platform (eq. 3.8) as an examples it is easy
to see that the identification problem splits into the subproblem of identifying seven
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kinematic parameters of a single SPS joint-link train looped back to the base by the
measurement loop (fig. 5.2).

A further advantage is, that in most of cases the identification Jacobian (section C.1) of
the subproblem can be derivated analytically. For model 42 this results in a Nx7 matrix
where N is the number of measurements. How much more complicated the forward
calibration of model 42 is can be seen in Wang's work where the direct problem has to
be solved numerically many times during identification and where the not analytically
available identification Jacobian of the size 6Nx42 is established by finite differences

[Wang 92].

To conclude, the implicit calibration of a multi-loop structure consists of performing
implicit calibration on some sub-structures if full pose measurement data is available. In
most of the practical cases, these sub-structures consist of a single loop composed of
one joint-link train and the measurement device as shown in figure 5.2.

"
measurement A
loop L L+LO
P
K
{B
Fig. 5.2:  Implicit calibration of a multi-loop structure may be reduced to the

implicit calibration of several single-loop structures.

The calibration problem given in figure 5.2 is that of finding the unknown set of
kinematic parameters (B, C,L0) for a given set of N full pose measurement points and
the corresponding transducer readings (L P R )!. Both sets will be collected in
Vectors:

p={B..B,B.C,.C,.C,,.L0}

! The A-sign indicates that these values are subject to measurement errors.
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2 A

b, =(L,.%,.5,,2,.8,.8,.9,} LN (D)

J J?

>

The implicit model for calibration of the single-loop structure shown in figure 5.2 is
given by the substitution of the measurement data (eq. 5.1) into the corresponding

equation of model 42 (eq. 3.8):
A a2 = _ _Y(~ &= . _— ~ 2 .
f(ﬁ,h,.)=(P,-+R,.-B—C) -(Pj+Rj-B—C)—(Lj+L0) =0 j=LN
or in vector notation:

f(p)=0 (5.2)
- T
with the vector = {fl’fZ"“’fj""fN}

The system of equations 5.2 is non-linearly coupled in the unknown kinematic

parameters p.

5.2.2 The merit function

According to eq. 5.1 the vector p contains seven unknown kinematic parameters for the
chosen example. More generally speaking, the vector p is of dimension n:

PeR” (5.3)

The system of eqs. 5.2 is determined if the number of unknown parameters (n) is equal
to the number of measurements (N) and could therefore exactly be solved for p [Zobel
93]. However, since the measurement vector (ﬁj) is subject to measurement errors the
number of measurements should be superior to the number of unknowns [Mooring 91,
Schroer 93]:

N>n (5.4)

The system of egs. 5.2 becomes thus overdetermined and the problem to solve is that of
minimizing the residuals according to a chosen merit function. The residuals are given
by:

2
J

r,= f(B.b;)= £,(p) = 1N
and are collected in a vector:

T oo
f‘={r,,r2,...,rj,...r,v} =1(p) (5.5)

According to Mooring [91] or Schréer [93] a least-squares merit function is well
adapted to the problem of parameter identification:
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o) =¥ -r=£(p)" -(P) (5.6)

The problem of solving the system of egs. 5.2 for p is now converted to the calibration
problem of finding a set of parameters p that minimizes the merit function (eq. 5.6).

5.2.3 Unconstrained non-linear least-squares estimation

Taking the square of the Euclidean norm of the residual vector as a merit function
simplifies the identification process considerably since the Hessian matrix of the merit
function is partially composed of first order derivatives (identification Jacobian) of the
calibration model. Due to this fact, only gradient based methods were reviewed in
annex C, which are generally much faster than direct search methods where no
information on the gradient of the merit function is provided [Press 89].

According to Mooring [91] for most of the practical problems the constraints on the
kinematic parameter errors, especially their tolerance field, can be ignored. Therefore,

the stated problem is that of unconstrained non-linear least-squares estimation.

5.2.4 Conclusion

For the identification problem of parallel robots, two of the methods reviewed in annex
C are chosen, due to their robustness:

- For weakly non-linear problems and small residuals -> Gauss-Newton method based
on singular value decomposition (SVD)

- For more non-linear problems and large residuals -> Levenberg-Marquardt (LM)
method.

When no information about the derivatives is available, the identification Jacobian is
replaced by finite difference approximation, which is obtained by a perturbation
approach [Wang 92, Grace 92]. The LM-method with integrated finite difference
approximation of the identification Jacobian is supported by the optimization toolbox of
MatLab™ [Grace 92]. In Mathematica™ [Wolfram 91] the LM-method is implemented
in a supplementary package called Statistics*NonlinearFit [Mathematica 93].

Whenever possible the implicit calibration model or variations of it will be identified.
The only difference compared to forward and inverse calibration is, where in the loop!

Loop built of the measurement device and the structure.
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the residuals to be minimized are defined. Simulations have shown that all three
methods end up with about the same remaining errors of the end-effector's pose as will

be shown in the next section.

5.3 Simulation of the identification step

5.3.1 Introduction

The aim of this section is to compare different calibration methods by simulation. The
advantage of simulation is that the original, accurate set of parameters p°, which was
used to generate the measurement data, is known. The identified set of parameters can
therefore be compared to the original one, which allows to get information on the

quality of the simulated identification.

As pointed out in the last section, the identification of multi-loop structures using the
implicit model may be split into the identification of several single-loop structures if

full pose measurement data is available.

This is the main reason why the simulations discussed in this section are based on an
example of a single-loop structure. A further advantage of the chosen singlie-loop
structure is that the direct as well as the inverse solution is simple and of closed form,
which allows to simulate forward and inverse calibration for comparison with the other
calibration methods.

5.3.2 A planar, slider-crank structure

A planar slider-crank mechanism [Denavit 55, Dijksman 76] having one degree of

freedom is shown in figure 5.3 .

Y/

Fig. 5.3: Planar, single-loop slider-crank mechanism



D

Identification 85

According to eq. 3.4, four independent parameters are required to describe a planar
3RP-loop with no arbitrarily located base and moving frame {b} and {p}. However,
assuming that the sensed R-joint is located on the axis of the P-joint and that the last R-
joint lies coincident with the P-joint reduces the number of independent parameters to
three, which will be collected in a vector according to eq. 5.1:

p={a,b,q0} (5.7)

The following nominal values are assigned to the lengths of the two arms:
a"=80 [mm] 1
(] p" ={80,50,0}" (5.8)
b" =50 [mm]
The slider of the P-joint is selected as end-effector. A position measurement of the end-
effector can be provided by a linear transducer, which measures the displacement of the
slider in the x-direction. The two measured values, namely the input angle g and the
output displacement x will also be collected in a vector assuming measurements in N
different points:

~

h,={4,.%,} i=L.N (5.9)

The implicit model is given by the closure equation over the loop:

a’ +x* - b* = 2xa*x*cos(q +q0) =0

(5.10)
The solution of the direct problem is:
x, 5 =a*cos(q+q0)i\/b2—az*sinz(q+q0) (5.11)
The solution of the inverse problem is:
a’+x*-b*
=+ —_— -
d12 _arccos( e rra q0 (5.12)

~

For the simulation of measurement data the vector h; is generated by the inverse
solution (eq. 5.12) and a Gaussian distributed measurement noise is added according the
flow chart of figure 5.4:

IFor identification the dimensional values are normalized by a characteristic length. For the slider-crank
structure the first arm length a” is chosen as characteristic length. However, for clarity dimensional

values are kept in the text.
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Generation of
Accurate set of measurement error,
parameters e.g. Gaussian
— distributed
po .
Generation of N points in Solving the inverse K & measurement
the world space, e.g. | X; q,,X; h, =g, %, . .
uniformly distributed ——» problem of the {q A P{ points with

in the workspace calibration model added error

Fig. 5.4: Generation of the measurement points for simulation.

It is of course also possible to use the solution of the direct problem, but using the
solution of the inverse problem has the advantage that it is easier to create a uniformly
distributed set of measurement points in the world space and that the inverse problem
may be easier to solve for multi-loop parallel robots than the direct one (chapter 6).

The following numerical values are assigned to the accurate parameter set p°:
a’=a"+Aa=80+0.2 [mm]=80.2 [mm]
b°=b"+Ab=50+0.1 [mm]=50.1 [mm] p°={80.2,50. l,l}T (5.13)
q0°=1 [°]

The measurement errors are Gaussian distributed with standard deviations! of :
6,=0.02 [mm] s 14
6,=2/60 [°]=2 [] (5.14)

According to the flowchart shown in figure 5.4 a set of 30 measurement points ﬁj was

generated shown in figure 5.5:

1This statistical property has to be chosen realistically. A calibration method may work well when
simulated without measurement noise but may fail when applied to measurement data (e.g. “cascaded
calibration” paragraph 5.3.7). An angular measurement error of 10 arcseconds introduced by Lin [89] or
an assumed measurement error of 1 micrometer per 100 millimeters [Innocenti 95] is difficult to reach in
practice as shown in chapter 4. In reality much less is known about the quality of the measurement device

and its improvements is very time consuming and expensive.
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X [rm]
60 80 100 120

Fig. 5.5: Set of 30 measurement points (measurement errors amplified by a factor
of 20 for visibility). The graph shows the calibration model with the
accurate parameter s et p°.

Since the parameterization is chosen with care and no dependent measurement points
are introduced, the slider-crank mechanism doesn't represent a pathological case for
identification. In other words, any of the non-linear least square estimation techniques
reviewed in annex C works well for this example. Therefore, the question of robustness
of the different least square estimation techniques can't be tested using the proposed
example. For more detailed information about robustness the reader is referred to
Fletcher [87] and Press [89].

Now, the measurement data are prepared and the different calibration method can be
tested, which is subject of the remaining paragraphs of this section.
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5.3.3 Implicit calibration

The first and to the author's opinion most important calibration method for parallel
robots is implicit calibration. It is given by substitution of the measurement data shown
in figure 5.5 into the implicit model (eq. 5.10):

f(fi,ﬁj) =f;p)= a’ +5Ej2 -b’ —2*a*fcj *cos(éj +q0)= 0 j=1.N (5.15)

For least-squares estimation techniques for parameter identification one element of the
residual vector T (eq. 5.5) for the iteration step k can be calculated as:

r,=f=a’+3?—b}—2%a*% *cos(g; +40,) i=1.N (5.16)
One row of the identification Jacobian J (eq. C.5) can be written as:

3, ={2%a, - 2x% *cos(§;+40,), -2*b,, 2%a,*% *sin(g,+40,)} =L.N (5.17)

Finally, one layer of the identification Hessian H (eq. C.8) is given by:

2 0 2x% *sin(g; +40,)

0 -2 0 j=1.N (5.18)
2% J‘c/ *sin(c}j + qu) 0 2*ak*5cl *cos(éj + qu)

ol
I

~.

The identification of the parameter set P' to fit the measurement data is performed

according to the flow chart of figure 5.6:
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Fig. 5.6: Flow chart of parameter identification with optional use of one of the four

methods for least-squares estimation reviewed in annex C.
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All of the four different methods converge to the same set of parameters, but require a
different number of iterations and therefore a varying calculation time:

p' ={80.196 [mm] 50.107 [mm] 1010 [°]}’ (5.19)

Table 5.7 shows the number of iterations and the calculation times of the different
methods given in annex C and figure 5.6. The simulations were done using
Mathematica™ on a Macintosh having a Motorola 68030-processor with a
mathematical 68882-coprocessor. The calculation time depends strongly on the use of

build-in functions or not.

Method Number of Calculation function
iterations time [s]
Newton 4 59 programmed
Gauss-Newton based on Normal 3 26 programmed
Equations
Gauss-Newton based on singular 3 7 programmed /
value decomposition (SVD) build-in (SVD)
Levenberg-Marquardt (LM) 3 18 built-in
Steepest Decent 72 57 built-in

Table. 5.7: Number of iterations and calculation time of the different methods for
parameter identification (fig. 5.6) of the slider-crank mechanism.

From table 5.7 it can be seen that including the identification Hessian isn't advantageous
for the chosen examples (Newton method) since more iterations and more calculation
time is needed than for the Gauss-Newton method. This is somewhat contradictory to
the expected quadratic convergence rate of Newton's method as compared to the only
linear convergence rate of Gauss-Newton method. This may be due to the weak non-
linearity of the treated problem. Newton's method will not be further used in this work.

The difference in the calculation time between the Gauss-Newton method using normal
equations and singular value decomposition (SVD) can only be explained by the use of
built-in functions in the case of SVD. Their iteration steps are identical, of course. The
Gauss-Newton method is the fastest method requiring the lowest number of iterations.

The Levenberg-Marquardt (LM) method lies as expected between the Gauss-Newton
and the steepest decent method. The poor convergence rate of the steepest descent
method is well known in numerical mathematics [Press 89]. This method is therefore

also abandoned.
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Table 5.7 shows also a clear difference in calculation time between built-in and self-
programmed functions, which supports the decision to use standard software libraries
such as the optimization toolbox of MatLab™.

It remains to discuss the improvement of accuracy gained by calibration. This will be
done in two parts:

The results will firstly be qualified using the nominal parameter set p” and the

identified parameter set P' as in the experimental calibration carried out in section
5.4 and 5.5.

In the second part, the identified parameter set p* will be compared to the accurate
parameter set p°, which had been used to generate the measurement data for
simulation (fig. 5.4).

Figure 5.8 shows the residuals defined in eq. 5.16 plotted versus the measurement
points before and after calibration:

r [(mm”~2]
10p
- N
5 10 15 0 30
_20 3
\ -n /I
\ ——- before: p /
-60F \\ —_—after: pl /
\ /
N /
\\ ,/
-100} \ /
\/\\,\ /v
-140t
Fig 5.8: Residuals of the implicit model before and after calibration. The merit

function Q defined as T'.F decreases from 319'829 to 614 [ mm*].

The residuals of the implicit model are rather abstract. Thus, table 5.9 shows on the left
hand side how much the accuracy of the end-effector (slider) position was actually
improved by calibration. This may be important to know when controlling a milling
center or other machine-tool of parallel topology. On the right hand side of the table the
error of the encoder readings is shown. It may be required for a measurement machine
with a parallel structure if the end-effector is brought into contact with the piece to be
measured. In addition different factors of improvement are defined for quantification of
the gain of accuracy by calibration.
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Improvement factor of the position

N

2 A% (7")
FPe=il =179

=l

A% (')

T

T

!

Improvement factor of the joint angles

N
XA ()
Frr=i2l =203

g|Aﬁ,~(5")

Table 5.9: Summary of the results of the calibration performed on the implicit model.

If the orientation of the end-effector is included in the calibration model a third factor of
improvement must be defined:
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——L——————f— (5.20)

The right hand side of table 5.9 shows that the position error of the slider becomes very
high when the mechanism 1is in its direct singularity (bifurcation of two solutions ->
gain of one degree of freedom). For that reason close approach of singularities must be
avoided during the data acquisition phase (chapter 4).

The identified set P* (eq. 5.19) used to generate the measurement data will now be
compared with the accurate set p° (eq. 5.13). Their difference is given by:

p°-F' ={4 [um] -7 [um] -35["1} (5.21)

In figure 5.10 the difference between the inverse solution of the accurate parameter set
and the identified parameter set is plotted over the workspace ( Ag = g(p°,x) - g(Pp', x)):

Ag (']

.4t

2k l(”,,a”"_—_————__

0 . . . ' x [mm]
0.2t 40 60 80 100 120
-0.4F
-0.6}

-0.8F
-1k

Fig. 5.10:  Plot over the work space of the difference between the inverse solutions of
50 an d ﬁi '

Figure 5.10 as well as eq. 5.21 show that the identified parameter set P’ is very close to

the original data set p°. Implicit calibration performs well for this kind of problem in
spite of the measurement errors introduced (eq. 5.14).
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5.3.4 Forward calibration

The term "forward calibration” was introduced by Withney [86] for calibration of serial
robots. Forward calibration uses the direct solution (eq. 5.11) of the model.
Measurement data are thereby substituted into the direct solution. The residuals of the

minimization problem are given by:

A 2 ~ .
rj=ak*cos(t§j+q0k)i\/bk2—akz*sin(qj+q0k) — %, ji=1.N (5.22)

Forward calibration (eq. 5.22) was performed using Gauss-Newton method based on
singular value decomposition (SVD). To avoid diverging of the algorithm measurement
points (point 8-13 in table 5.9) closest to the direct singularity [Gosselin 88] at point
{38.7°, 62.4 mm} were not used for identification. The following set of parameters was
identified within 19 seconds and four iterations:

P’ ={80.166 [mm] 50.060 [mm] 0.961 [°]}’ j=L.N (5.23)

The two factors of improvement as defined in table 5.9 are:
Ff*=18.4  F™ ™ =284 (5.24)

Comparison with table 5.9 shows that the F"*-factor is slightly superior to the same
factor calculated for implicit calibration. Such small differences are not significant. It
can therefore be concluded that both methods work about equally well.

However, forward calibration is not well suited for the calibration of parallel robots due

to the following reasons:

- The direct problem of parallel robots has always several solutions (e.g. eq. 5.22).
The bifurcation points of the different branches of solutions are located at direct
singularities (paragraph 6.2.4). For forward calibration the solution which
corresponds to the real, measured robot configuration must be selected. This
selection problem may become severe during identification when the parameters of
the model are varied, what changes also the bifurcation points of direct solutions. A
measurement point which was originally taken at a certain distance away from a
direct singularity of the nominal model may get close to this wandering bifurcation
during identification forcing the identification algorithm to fail (as could be seen in
this paragraph). Forward calibration has therefore two problems to face when
approaching a direct singularity: First, as for all other methods, measurement values
are subjected to large errors due to physical breakdown of the structure. Second, the
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right solution has to be chosen which is difficult closed to the mathematical
branching of the direct solution (mathematical breakdown).

- Comparison of eq. 5.22 with the corresponding eq. 5.15 for implicit calibration
shows a more complicated mathematical structure for forward calibration, which
increases the complexity of the identification Jacobian. Unlike the identification
Jacobian of implicit calibration, the identification Jacobian for forward calibration of
multi-loop structures can generally not be supported analytically due to its enormous
complexity .

- As shown in chapter 6, the solution of the direct problem of multi-loop structures can
be already very complicated. Due to the fact that a system of closure equations
representing a multi-loop structure is coupled in the unknown world coordinates, the
analytical solution -if its exists- will contain all kinematic parameters in each of its
equations. The forward calibration! can therefore not be split into subproblems as in
the case of implicit calibration.

Forward calibration was treated in this paragraph in order to shown that this standard
method for the calibration of serial robots is not suitable for parallel structures.

5.3.5 Inverse calibration

Inverse calibration is performed on the inverse solution of the kinematic model (eq.
5.12), where the residuals are given by:

a’+3*-b> .
r, =iarccos("———1-———"— -0, 4,5, j=1.N (5.25)

J

Again, the problem of multiple solutions arises. However, it may be more easily to
overcome, since the bifurcation of solutions takes place at inverse singularities
(paragraph 6.2.4), which is generally located at the border of the workspace. The
identification of the parameters using Gauss-Newton method based on singular value
decomposition leads within three iterations and 13 seconds of calculation time to the
following set of identified parameters:

p' ={80.208 [mm] 50.116 {mm] 1015 [°]}’ (5.26)

ISimulations of forward calibration of a Stewart Platform were made by Wang [92], showing the

enormous complexity of applying this method to multi-loop structures.
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Calculation of the two factors of improvement defined in table 5.9 yields:
F=17.1 F?™ =293 (5.27)

The F’™-factor is the same as received by implicit calibration whereas the F"*-factor
is slightly below the one given in table 5.9. However, such slight differences may again
not be trusted and it can be said that both of the methods work with equal quality on
such kind of problem. The solution of the inverse problem is generally simple for
parallel robots if the model is not too complicated (i.e.: simple for model 24 and very

complicated for model 54).

5.3.6 Linear calibration

Linear calibration is based on a linearization of the implicit model at the nominal
parameter set. For the slider-crank mechanism the following parameter substitution may
be introduced:

a=a"+Aa, b=>b"+Ab, g0=Aq0 (5.28)

Substitution into the implicit model (eq. 5.10) and neglecting quadratic terms yields:

~ N T
24" -2x;co0s(g;) Aa

-2b" < Ab =(b")2-(a”)z—(ij)z+2£ja"cos(éj) j=1.N
2%x,a"sin(g;) Aq0
or in matrix notation:
I ap=-f, (5.29)
5" P

This is an overdetermined linear system of equations, which can be solved with singular
value decomposition (SVD) leading to the following identified parameter set:

P ={80.184 [mm] 50.087 [mm] 1012 [}’ (530)

The two factors of improvement (table 5.9) are:

FP*=12.06  F*™ =26.17 (5.31)

Both factors are below the factors of implicit calibration given in table 5.9. This is not
further astonishing: Comparison of the two calibration methods given in figure 5.6 and
eq. 5.29 shows that the first step of iteration of the implicit calibration is identical to the
linear calibration. In other words, if the iterative algorithm of the implicit calibration is
converging, than the identified parameter set will always be of better quality than the

one found by linear calibration.
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5.3.7 Cascaded calibration

Cascaded calibration of parallel robots was proposed by Zhuang [91]. The method may
be explained as the splitting of the implicit model into sub-models, which are as linear
as possible in the unknown parameters. The creation of this sub-models is based on
manipulations of the N error equations, which may be added to or subtracted from one
another. Therefore it may be useful to acquire special measurement sets, where some
joint or world coordinates are hold constant. This will make terms depending on these
coordinates vanishing by subtraction of two error equations of this special measurement
set. Zhuang for example eliminated the quadratically involved transducer offset by
collecting measurement data of the Stewart Platform where the corresponding leg was
kept at a constant length. Further work has been done using this concept [Geng 94,
Innocenti 95].

Cascaded calibration is applied here to the slider-crank mechanisms. The implicit model
(5.10) is first rewritten as linearly as possible with respect to its kinematic parameters.
Applying trigonometric transformations yields:

a’+a’-b’+3'-2%a, cos(g;)-2%a,sm(g,)=r, j=L.N (5.32)
with

a, =a cos(q0), a,=—a sin(g0)

T o
The power of two terms of the unknown parameters {ax,ay,b} appearing in eq. 5.32
are isolated from the measurement data. Any subtraction of two error equations will
therefore be linear with respect to the remaining unknowns. Thus, N-/ error equations
will be subtracted from the last one:

i =37 =2(2y - %, )a,cos(4,) — 2%y — £ )a,sin(g;) = (ry - ;) j=1.N-1 (5.33)

This is the first linear sub-model used for the first step of the cascaded calibration in
order to identify linearly the two unknown parameters a,,a, — a;,a,: Once these two
parameters are identified, they can be back-substituted into eq. 5.32. The latter can be
linearly solved for the remaining unknown b?, which leads to the second step of
cascaded calibration:

i2 i2 2, 22 & i A A i AN .
a, +a,; —b"+x;"—2x,a,cos(g;)—2x;a sin(g;) =7, J=1.N (5.34)
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Finally, the identified parameter set can be calculated as:
a = wl(a;)z + (a;)2 , b= wf(b")z , q0' = arctanZ[——‘fy,—f) (5.35)
a a

Note that cascaded calibration doesn't need an initial guess of the parameter set if all

sub-models are linear.

Cascaded calibration leads within 0.8 seconds to the following set of identified
parameters using singular value decomposition (SVD) in order to solve the two over-
determined sub-models given by eq. 5.33 and eq. 5.34:

P ={80.224 [mm] 50.156 [mm) 1.050 [°]}’ (5.36)

where the two factors of improvement (table 5.9) are:

Ff* =12.12 Fl" =26.16 (5.37)

The improvement is about the same as reached by linear calibration (eq. 5.31), but
below the improvement gained by implicit calibration (table 5.9). It should be pointed
out that without measurement noise cascaded calibration finds the correct parameter set.
However, it seems less suitable for identification if there's measurement noise.

5.3.8 Semiparametric calibration

Semiparametric calibration is situated between parametric and nonparametric modeling
as discussed in section 3.1. It is a modification of a calibration concept for serial robots
proposed by Sayeh [94] and independently by Flury [94] based on a work of LeeS [91].

The concept is to separate joint and world coordinates of the kinematic parameters in
the implicit model by means of expanding trigonometric functions into sums of
trigonometric functions. Once separated as many independent linear factors are
introduced as combinations of joint and/or world coordinates exist plus an additional
linear factor for the constant part in order to replace the original kinematic parameters.
This is more than a parameter substitution since in general more independent factors
have to be introduced than kinematic parameters were required. Taking for examples
model 24 of the Delta robot 36 independent linear factors are needed. Thus, a part of
the geometric constraints of the underlying system were skipped and replaced by
independent factors, which corresponds to a replacement of the parametric model by a

semiparametric model.
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As indicated the starting point is the implicit parametric model given by eq. 5.10:

a® +x* —b* ~2*a*x*cos(qg+q0)=0 (5.38)

The factor, where joint as well as world coordinates are not yet separated from the
kinematic parameters, is the last one on the left hand side. Thus, this trigonometric
function will be written as a sum of trigonometric functions:

a’ + x* = b? —~ 2xa*x*cos(q) * cos(q0)+ 2% a* x*sin(g) * sin(g0) = 0 (5.39)

which corresponds to eq. 5.32 in the cascaded calibration.

Coordinates and kinematic parameters are now separated. Two combinations of joint
and world coordinates exist. Thus, three linearly independent factors ( a,) are required in
order to establish the semiparametric model for the slider crank mechanism

a, + a,*x*cos(q) + a;* x*sin(q)+ x> =0

(5.40)

Substitution of the N measurement points (fig. 5.5) yields the model for semi-
parametric calibration:

a,+a,*3*cos(g; )+ ay* 2 *sin(g;) + 17 =0 j=1L.N (5.41)

Semiparametric calibration leads after 0.2 seconds to the following set of identified
linear factors (a;) using singular value decomposition (SVD) to solve the over-
determined system of equations 5.41:

a' =3921 [mm?®), @, =-160 [mm], a,' =-2.83 [mm] (5.42)

Substitution of eq. 5.42 into the semiparametric model (eq. 5.40) and solving the direct
and inverse problem leads to the two improvement factors as defined in table 5.9:

FP* =179 Flon =293 (5.43)

Comparison with implicit calibration shows that the gained improvement is exactly the
same (table 5.9). For the slider crank example the number of kinematic parameters is
equal to the numbers of linear, independent factors needed for the semiparametric
model. This allows exceptionally to extract the kinematic parameters from the identified
linear factors!, which shows in fact that both parameter sets are the same.

Vg =a*-b* a, =-2*a*cos(q0),a, = 2*a*sin(g0)
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Semiparametric calibration needs no initial guess and is about 35 times faster than
implicit calibration leading to the same factors of improvement. It is decoupled for each
joint-link train, as all methods which are based on the implicit model. Major drawback
is that generally the kinematic parameters cannot be extracted from the independent,
linear factors!. This cancels the advantage of parametric modeling, allowing a quality
control of the robot's mechanical parts by calibration. This gets particularly important
for the two chosen practical examples, the Delta and the Argos structure, where the
orientation of the end-effector and the position of the virtual center cannot be influenced
otherwise than by exchanging mechanical parts exceeding tolerances. This was the
reason for semiparametric calibration not using.

5.3.9 Optimal selection of measurement set

For the slider-crank mechanisms the 30 measurement points were equally distributed
over the whole workspace. All measurement points together build a measurement set. In
praxis, each additional measurement point increases the costs of the calibration. In order
to minimize the number of measurement points for a reliable calibration, points have to
be found in the workspace where small variations of some of the kinematic parameters
can be well observed. In other words, such a point must be sensitive to changes of these
kinematic parameters. However, minimizing the calibration cost is not the only
argument for optimizing the measurement set. Bad measurement points (e.g. close to a
singularity) can even force the identification algorithm to diverge as could be seen in
the example of forward calibration in paragraph 5.3.4.

The observability of a kinematic parameter varies in the workspace and each parameter
has its maximal observability at a different point. The observability of a kinematic
parameter does not only depend on the location in the workspace, it also depends on all
the other parameters. The manifold of possible sets of measurement points makes the

optimal choice to an oprimization problem of large scale [Press 89].

1The analytical relation between kinematic parameters and independent, linear factors is violated by the
introduction of the factors, which are claimed to be independent. Solution of the resulting overdetermined
system of equations in a least square sense generally yields a badly fitting kinematic parameter set. The
parametric model 42 of the Stewart platform for examples would be converted to a semiparametric model
having 174 independent linear factors, which corresponds to a 132 times overdetermined system of

equations to extract the 42 kinematic parameters from.
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Apart from numerical search of the optimal measurement set some simple rules may be
established such as:

- Stay away of singularities, particularly of direct ones (paragraph 5.3.4).
- Avoid approaching the border of the workspace too closely (inverse singularities).
- Choose points in the entire volume where the calibration should be valid.

- If the parallel robot is symmetrical, the acquisition should be performed
symmetrically, too (equal treatment of each joint link train).

This approach is used for the experimental part of this chapter. However, numerical
techniques exist to find an optimal measurement set. One approach is based on
checking of the condition number ( K) of the identification Jacobian , which depends on
the measurement set [Mooring 91]. The condition number was defined in section C.3 as
the ratio of the highest and the lowest singular value. The bigger the x-number the
more ill-conditioned is the identification Jacobian. As already mentioned then, there are
two reasons for an ill-conditioned identification Jacobian. The model may contain
redundant parameters or the measurement points are badly chosen. If the model is for
sure not redundant! the k-number can be used to search for the optimal measurement
set by varying the measurement points and calculating the resulting x-number. The set
with the lowest x-number will be the optimal one. An similar approach based on an
observability measurement where all singular values are taken into account is given in
Borm [91]. A noise amplification index was defined by Nahvi [96] as ratio of the lowest
singular value to the x-number.

Another numerical approach was proposed by Zhuang [94] using simulated annealing
(SA). According to Press [89] the SA-method allows to find the optimum of large scale
problems and is therefore well suited for the search of optimal set. It is based on the
stochastic simulation of a cooling down process, where the molecules loose more and
more energy and the probability for an up-hill step gets smaller and smaller, but it
remains possible. SA-method is therefore capable to escape from a local minimum once
trapped in it. According to Zhuang SA-method works well on the problem of optimal
selection of the measurement points.

Investigations on the observability of model 54 of the Delta robot have shown that 12
parameters (set P2 given in eq. 3.15) describing the size of the end-effector and the

I'This should be guaranteed by the eq. 3.3 proposed in section 3.2.1
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distance between the forearms are nearly unobservable in the entire workspace.
Searching for possibilities to identify these 12 parameters, one of the forearms could be
replace by a much longer one (e. g. 10 mm). In that case, the orientation of the end-
effector changes reasonably within the workspace and the 12 parameters become
observable. Another possibility is to change for calibration the configuration space
shown in paragraph 4.2.5. Both methods need a measurement device for large changes
in orientation (paragraph 4.3.3), which is difficult to support and therefore a drawback.

However, as pointed out earlier, small observability is caused by small sensitivity. Small
changes of the tolerance field of these 12 parameters nearly don't affect the pose of the
end-effector within the entire workspace. For that reason they are set to the nominal
values during identification. Only the remaining 42 parameters have thus to be identi-
fied.

5.3.10 Conclusion

In table 5.11, the results are summarized from implicit, forward, inverse, linear,
cascaded, and semiparametric calibration of the slider-crank mechanism:

Calibra- Identified Difference to Quality of Speed |Comment
tion parameters the accurate improvement
parameter set|  gyjtable for
quality control
Variable P -5 o) [F ] Nt
Units [mm] (°1 | [um] | ["] [mm*]| - | - - | [s]

p° 80.200}50.100 [1.00
Implicit [80.19650.107 {1.01} 4 | -7 |-35 | 614 [17.9P9.3|y| 3 | 7 -

Forward [80.166|50.060 0.96 |34 |40 [-141| 745 [18.428.4 |y{ 4 |19 | Difficult

L;fll case of
ulti-loop

Inverse [80.208 [50.116(1.02]-8 [-15]|-54 | 625 17.1R9.3}y] 3 |13 -

Linear |80.184 (50.087 [1.01§16 {13 |-43 | 749 {12.1R26.2}1y] 0 (0.2 LOFirst step
f implicit
calibration

[Cascaded }80.224 |50.146 ]1.05)-24 |-56 |-181 § 688 {12.126.2 | y }0/0 0.8 }No initial
guess
needed

Semipara- |80.196 150.107 |1.01| 4 | -7 |-35 | 614 [17.9129.3 |n] 0 |0.2 {No initial

metric guess
needed

Table 5.11: Summary of results from different calibration methods. Bold face letters
give the best values.
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Table 5.11 shows that implicit calibration is a good compromise as standard method for
the calibration problem of parallel robots. 1t is not only one of the best method in terms
of gained improvement, but it has also identified the parameter set closest to the
accurate parameter set. This is important since the identified parameters should not only
fit the measurement data as well as possible (local validity), but it should also be valid
for other measurement data generated by the accurate parameter set (global validity).
Furthermore, the identification problem may be split into subproblems and the
identification Jacobian differentiated analytically. Also, a quality control is possible,
which is especially important when the robot has less than six degrees of freedom.

Implicit calibration is proposed as standard method
for the calibration problem of parallel robots.

The factors of improvement in table 5.11 represent the upper boundary for gain of
accuracy by calibration. Even if a realistic variance of measurement noise is introduced
the distribution of the measurement noise is perfectly Gaussian. In reality however, the
measurement points will be subject to outliers and nothing is known about the

distribution of the measurement noise.
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5.4 Parameter identification for the Delta robot

5.4.1 Introduction

The nominal parameters p” of the mock-up built of the Delta robot (section 2.3) are
given in table 5.12. They correspond to the parameterization given in figure 3.9a&b and
table 3.10 (paragraph 3.4.2 ):

model 24
main D, D, D, Y o La, La, Lb
chain :
[mm} | [mm] | [mm] | [°] (] | [mm] | [mm] | [mm]
1 76 -16.5 0 0 90 [119.963 -3 240
76 -16.5 0 120 90 [119.963 -3 240
3 [ 76 | -165] 0 240 90 [119.963| -3 240

additional 30 parameters for model 54

main{ d, | ax | AB | AC, | AC, | AC, | ALb | b, | b, | b,
chain

[mm] | (7] | [] | [mm] | [mm] | [mm] | [mm] |[mm] |[mm] |[mm]
1 [ 20 ] 0 o o[ oo 0 [24] 0] 0
2 |20 ] 0 0 ] 0 [ o] o 0 [24 | 0 [ o
3ﬂr 20 [ 0 o [ o oo o [24] 0 [0

Table 5.12 Nominal parameter set p" of the Delta mock-up.

A set of 74 measurement points was collected with the full-pose measurement set-up
introduced in paragraph 4.2.4. The data are about uniformly distributed within a cube
located in the center of the workspace! taking into account the rules defined in
paragraph 5.3.9. This set of measurement data is used in the first two paragraphs of this

section.

For the least-squares minimization the Levenberg-Marquardt (LM) method (section
C.4) implemented in the optimization toolbox of MatLab™ was used [Moler 92, Grace
92]. All calculations were done on a PC with an Intel Pentium processor running at 90
MHz.

1The point where arms and forearms are perpendicular to each other is considered to be the center of the

workspace.
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5.4.2 Full position measurement and model 24

For the identification of the parameters of model 24 (eq. 3.16) only the position of the
end-effector and three joint angles are needed from the 74 measurement points
collected.

Identification of the 24 parameters was performed for the implicit model 24 (eq. 3.16),
which corresponds to implicit calibration (paragraph 5.3.3). This has the advantage that
the identification can be split into the identification problem of three single-loop
structures (fig. 5.2 and fig. 3.11) consisting of one joint-link train and the measurement
device having eight parameters each. For one of these single-loops one row of the 74 x
8 identification Jacobian (eq. C.5) can be analytically differentiated. The eight partial
derivatives consist of only 61 different factors.

With 3x9 iterations the LM-method has identified the following parameter set p' in
3x29 seconds using the nominal parameter set (p" -> table 5.12) as an initial guess:

model 24
main D, D, D, v o La, La, Lb
chain ’
[mm] | [mm] | [mm] [°] (°] [mm] | [mm] | [mm]

1 75.949 | -16.41 | 0.404 | 0.064 | 89.881 | 119.960| -3.702 | 240.130

76.141 { -16.709| 0.182 | 120.008| 90.044 | 119.933| -3.204 |240.067

3 76.023 | -16.624 | 0.062 |239.998| 90.010 [ 119.990| -2.672 [239.949

Table 5.13:  Identified parameter set p' of model 24 based on implicit calibration .

The position error of the end-effector before and after calibration, calculated according
to the flow chart given on the left hand side of table 5.9, is shown in figure 5.14:
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Position error (model 24 of the Delta)
in x iny
0.8 ) 0.6
! ' ' N ’/\/l ' 1"
oo !
_ 0.6 l| lll " ,A n \ [l‘ _ 04 //\,I \ \’/\’l I\]l . .
E X Bty £ O o
E 04} I’ V) ‘l 0" ,'l\ oy ' 3 \; V\:‘J' v, N
x Vo ,ll"l ,"'| : | | <t-O.Z A
= 0.2 \ ] \ Iy I { | - v
U i (I
] Vo Yy 1A 3
© Loy Y A 1t ' 0 “/\\M_/"\*/L/‘/\f'\f/\/\w 1
oA A
v ]
-0.2 -0.2
(4] 20 40 60 80 0] 20 40 60 80
measurement point measurement point
inz Euclidean norm of the error vector
0.2 1
\ | — n i l"
—_ OW/’WM"\N 20'8‘\ oh :,‘ honl
£ |'\/,|"n"l"‘/ = P l',‘ ot hoA )
.§.'0-2"| "/.1"\ NI 30-6"'\.’\”,' ot '\," I
N Py [T ARV oy oy \ S Yooy UL v \

1 \ \’ |l \ 3 \ ; i
S04t u trar Ty v 204 . N A
% 1y :;’ ‘I’ il ‘ ! g ‘/ \ /\l\

-0.6V ' 1 { J 2 0.2 -
0.8 0 \N—’J\/\/\/\/\’\/J\'JA’J\/\/V\\M
o 20 40 60 80 o] 20 40 60 80
measurement point measurement point
P": before calibration -> dashed line
p': after calibration -> solid line

Fig. 5.14:  Position error of the Delta end-effector before and after calibration.

Table 5.15 presents mean value and standard deviation of the differences between

measured and calculated values. Further the improvement factors (table 5.9) are given:

direct solution (fig. 5.9 left hand side) | inverse solution (fig. 5.9 right hand side)

Position error [ 4m] Joint error [']

Ax | Ay | Az | |ax| A8, | A6, | 48, | |aq]

before calibration

mean 260 350 | 230 | 550 | mean 12 11 -4 18
deviation | 220 99 190 180 Weviation{ 3.5 3.3 2.7 3.1

after calibration

mean -0.7 | -0.1 | -3.6 44 mean -0.02 | -0.02 {-0.003] 1.5

deviation 37 19 29 26 [eviation 1.2 0.9 0.8 0.9

Factor of improvement for the position | Factor of improvement for the joint angles
F™ =123 F?" =119

Table 5.15: Position error of the end-effector and the joint angle errors before and
after calibration based on model 24.
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Implicit calibration was performed using the analytical identification Jacobian of model
24. Approximation of the identification Jacobian by finite differences leads to a less
accurate result and requires generally more time and iterations. The calculation time
(t,,), the number of iterations (N,,) and the number of times the function (model 24)
had to be evaluated are shown in table 5.16. Besides, forward and inverse calibration
were executed on model 24 leading to slightly different sets of parameters than the one
found by implicit calibration (table 5.13). Semiparametric calibration needs no Jacobian
for the identification of the 36 linear factors. The solution of the direct and inverse
problem of the semiparametric model is similar to the solutions of model 24 given in
section 6.3. Again it should be pointed out, that semiparametric calibration is only a
good fitting calibration, if the 36 linear factors are used consequently.

Calibra- | Number Calculation speed ~Quality of
tion of the Number of Iterations Improvement
g}llzrrll Number of function evaluations Suitable for quality
control
without Jacobian with Jacobian
Variable t., Ny | £ |t | No | B | P2 | FPom |-
Units [s] - - [s] - - - -

—

Implicit 1 186 17 | 256 | 35 9 32

y

" 2 129 13 177 | 29 10 31 y

! 3 141 13 186 | 23 8 24 y

! total 456 | 43 619 | 87 | 271 87 y

" 1,23 17821 28 825 - - - 12.3 119 |y
Forward 1,23 | 506 7 189 - - - 12.6 117 1y
Inverse 1,23 | 318 6 161 - - - 12.0 122 1}y
Semi- 1,2,3 0.5 0 1 - - - 15.2 150 [n

parametric

Table 5.16: Gain in calculation speed of implicit calibration with and without the use
of the analytical identification Jacobian. The quality of improvement of
implicit, forward and inverse calibration is also given. Bold face numbers
indicate the best values excluding semiparametric calibration.

1The high calculation time is due to the numerical calculation of the identification Jacobian. The latter
contains six 8x8 zero blocks (indicating that the main chains are decoupled for implicit calibration)

provoking useless calculations.
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Semiparametric calibration may be successfully applied, if there is no need for quality
control. However table 5.16 shows only the local validity of a identified model, which
means, that the same measurement points were used for both, identification and check
for improvement. It may be therefore less surprising that a model with 36 independent
parameter will better fit then a model with only 24 parameters. To check for global
validity some authors [Zhuang 95] proposed to split the measurement points into two
sets, one for identification and the other one for the improvement check. It was expected
that due to the partial skipped geometric constraints, the global validity of the calibrated
semiparametric model would be worse than the one received by implicit calibration.
However, splitting the set of the 74 measurement points into two sets showed for both

calibration methods equal global validity.

The question of the minimal number of measurement points required for a reliable
identification is closely related to the question of finding the optimal measurement set
discussed in paragraph 5.3.9. It is obvious that a sub-optimal set of measurement points
will need more measurement points for a reliable calibration than the optimal set. In
practice, a measurement set can be checked for the minimal number of measurement
points required for a reliable calibration by successively reducing the number of points

taken for calibration.

This is done in figure 5.17 for model 24 and the already used set of 74 measurement
points which are equally distributed in the workspace of the Delta robot. This set was
divided into equally distributed subsets of 0,8,12,16,24,32,40,48,56,64 and 74 points!.
With each subset a parameter identification of model 24 was performed leading to 11
parameter sets. Taking the direct solution (paragraph 6.3.1) the remaining error of the
position (Euclidean norm) of the end-effector on the entire 74 points (table 5.9) was
calculated. The mean value of these errors are plotted in figure 5.17 versus the number

of points used for calibration.

1Taking zero points for calibration corresponds to the uncalibrated state, where the parameter set is given
by the nominal values. Eight points are the minimal number required for the calibration based on model
24 when full position measurement is available (three redundant measurements). It leads to a determined

non-linear system of equations, which can be solved exactly, i.e. with zero residuals.
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Remaining position error plotted versus the measurement points taken
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Fig. 5.17: Mean value and standard deviation plotted versus the number of
measurement points used for implicit calibration which is based on model
24 of the Delta mock-up.

The experimental results of figure 5.17 show that an implicit calibration based on 2x8
measurement points yields already a quite reliable calibration. This rule of thump of
taking twice as much measurement points as parameters of the model is also supported
by the work of Zhuang [91]. However, increase of the number of measurement points
leads to a calibration with higher reliability.
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5.4.3 Full pose measurement and model 54

For the identification of the 42 sensitive parameters of model 54 (eq. 3.12) the entire

measured pose of the 74 collected measurement points is needed, including the

measured deviations in the parallelism between the end-effector and the base.

The insensitive and nearly unobservable parameter set P2 (eq. 3.15) was set to its
nominal value. Implicit calibration was performed by splitting the whole problem into
three subproblems. Thus, each main joint-link train forming together with the
measurement device a double-loop structure was identified separately. In 3x13

iterations using 3x740 seconds of calculation time, the LM-method has identified the

following set of parameters (P') using the nominal parameter set (p” -> table 5.12) as

an initial guess:

model 54
24 parameters influencing the position
main || D, D, D, 9 o La, | La Lb
chain
[mm] | [mm] | [mm] [°] (°1 [mm] { [mm] | [mm]
1 75902 | -16.318 | -0.642 | -0.517 | 89.513 | 119.967] -3.693 {240.074
2 76.116 | -16.716| -0.793 | 119.372] 90.268 | 119.943| -3.236 | 240.108
3 76.063 | -16.792 | -0.658 |239.573] 90.093 | 119.976| -2.673 | 240.009
additional 30 parameters affecting the orientation & the position
manfl 4 | Ax | AB | AC, | AC, | AC, | ALb | b b b
chain * ¢ g 7 ¢
[mm] | [°] [(°] | [mm] | [mm] | [mm] | [mm] ([mm] {[mm] |[mm]
1 20 10343 | 0.582 |-0.023{-0.005]|-0.006] 0.092 | 24 0 0
20 1}-0.235] 0.610 |-0.049]0.069 | 0.023 | 0.009 | 24 0 0
3 20 1-0.080] 0.404 |-0.049| 0.076 |-0.012|-0.062| 24 0 0

Table 5.18: Identified parameter set p° of model 54 based on implicit calibration.

The position and orientation errors of the end-effector before and after calibration were

calculated according to the flow chart given on the left hand side of table 5.9. The
position error is not plotted in figure 5.19, since it differs only slightly from figure 5.14.
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Orientation error (model 54 of the Delta)

in alfa in beta
0.5 0.4

delta alfa [°}
o
deita beta [°)

-0.5 .
0 20 40 60 80 0 20 40 60 80
measurement point measurement point
in gama Euclidean norm of the error vector
0.6 0.8
— 04ph I\ 06 , i
(D N LY A N = [} / e
g Yo \v,\\ll\\/,\\“ /\\/./v\. S N iy ;'ll"” Ul
= Y ] NV I‘/| |l\‘l/| 'v \1\/
& 0.2 204 Ay ‘\l o "\’\‘l
s 5 RN
[ =
S 9 W\N\/\'\/\\/\/\/\/\/\,\/J 20.2
-0.2 0 -
0 20 40 60 80 0 20 40 60 80

measurement point measurement point
p": before calibration -> dashed line
p': after calibration -> solid line

Fig. 5.19:  Orientation error of the Delta end-effector before and after calibration.

Table 5.20 shows the improvement factors (table 5.9 & eq. 5.20) as well as mean value
and standard deviation of the difference between measured and calculated values.

direct solution (left hand side of fig. 5.9)

Position error [ Lm] Orientation error ['] Joint error [']
Ax | Av | Az | |Ax| | Ao | AR | Ay | |ag| | 48, | 48, | A8, | |Aq]

before calibration

mean 260 | 350 {-230| 550 f 13 194 |18 |27 |12 | 11 | 4 | 18

deviation [f 220 [ 99 {190 | 180 | 6.8 (82 | 3.1 [49 |35 33| 27 | 3.1

after calibration:

mean -1.41 1.0 | 6.7 | 53 }0.10(-0.25 [-0.04 | 7.2 [-0.05]-0.07{-0.13 | 1.9

deviation || 42 | 32 | 34 | 32 |6.1 |56 |22 |45 1511212113

Improve- F™ =10.1 F =37 Fln =92
ment

inverse solution (left hand side of fig. 5.9)

Table 5.20: Factors of improvement and statistical values
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5.4.4 Plane/Spheres set-up and model 24

Hornick [91] proposed to use a simple precision plane for calibration, which is
arbitrarily located in the workspace of the robot. For such an arrangement (left hand
side of figure 4.6) measurement data were collected. Identification of the parameters of
model 24 was attempted applying the LM-method but the algorithm was diverging.

This is not surprising since some of the parameters in model 24 are unobservable. The
robot is not constraint in the three degrees of freedom of the plane. During identification
the not fully constraint parameters are able to twist around the z-axis of the {B }-frame
and to translate laterally in x- and y- direction.

Driels [91] proposed to use a simple rod equipped with two S-joints at each end
(ballbar) to connect the end-effector to its base (right hand side of figure 4.6).
Combination of such a ballbar and the plane is referred to as plane/spheres set-up
(paragraph 4.2.6). The idea is to introduce three additional constraints. A ballbar will
guide the end-effector on a sphere. Combining the plane with a sphere will omit the
translation in x- and y-direction. A second sphere is necessary to avoid the robot

twisting around the z-axis.

During the measurement step three different kinds of data sets have to be acquired:
- The first set is acquired while the end-effector is sliding on the plane.

- The second set is acquired while the end-effector is connected to a first hole in this

plane by a ballbar.

- The third set is acquired by connecting the end-effector to a second hole in the plane
by a ballbar.

To choose the holes within the added precision plane was induced by the topology of
the industrial version of the Delta robot [Clavel 91]. The current construction of the
Delta robot is that of a portal robot having the end-effector below its base (fig. 1.9 and
4.6). Below the end-effector a plate is needed to support the work piece, which is
referred to as interface plane. This interface plane with two additional holes offers
several advantages for the calibration: Firstly, the robot will be calibrated relative to the
plane and the holes, which can be used to locate the work piece in the workspace of the
robot. Secondly, it is not very convenient to locate a work piece relative to a { B }-frame,
which is attached to the base plate of the hanging robot. Alignment of the work piece is
much easier if the {B}-frame is physically present on the interface plane. This means
that the first hole defines the origin of the { B}-frame, the second hole fixes the direction
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of the x-axis whereas the z-axis stays perpendicular to the plane. Thirdly, fast and easy
recalibration becomes possible.

Simulations of the identification step using the plane/spheres set-up have shown a
serious mathematical drawback. By applying the method of simulated annealing [Press
89] it was shown that many (hundreds) other minima are located around the minimum
created by the accurate parameter set used to generate the measurement data in presents
of measurement noise. Choosing the right minimum among the many minima is an
open research topic [Merlet 93b]. Simple rules such as taking the parameter set closest
to the nominal one fail. It is also not a solution to search for the global minimum, since
some of the parameter sets will fit the noisy measurement data even better than the

accurate set!

The problem discussed above is the one of global validity of the identified data set. A
measurement set is collected in a part of the workspace in the hope that the identified
parameter set will be valid in the entire workspace. Simple convergence of an algorithm
is not a proof of its ability to find the parameter set with best global validity. Here,
simulation offers the advantage that this best global valid set of parameters is known as
the accurate set of parameters used to generate the data set. Simulating a different
method (e.g. implicit, forward or inverse) accordingly the previous section (5.3) is a
numerical approach to solve the problem of multiple minima by searching for the
method which approaches the accurate set closest.

Following intuitive rule may be of any use: The more complex (nonlinear) the
mathematical structure of the underlying model is, the more minima will be generated
and the further away of the accurate parameter set the search algorithm will be trapped
in a minimum, which fits well the measurement data but is unsuitable for the rest of the
workspace.

For the plane/spheres set-up the solution of the direct problem must be substituted into
the equation of a plane and a sphere, respectively. Each measurement point leads to one
equation with a highly complex mathematical structure, what explains the great number
of multiple minima.

To conclude, the plane/spheres set-up seeks for an algorithm capable of identifying a
parameter set which is globally valid. For the plane/sphere set-up the global validity of
the identified parameter set gets particularly important for the following reason: From
measurement data collected on an x-y plane a set of parameters should be identified

which is valid in x-, y-, and z-direction. The z-axis is the direction of insertion for the
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Delta robot and therefore crucial. High accuracy is thus needed. Today's algorithms fail
at solving this problem, since they get trapped by one of the minima around the

searched minima.

5.4.5 Short-cut set-up and model 54

The short-cut set-up (paragraph 4.2.7) consists of building a single-loop structure,
which is redundant in the actuator readings with the mechanical parts of a multi-loop
structure. For the Delta robot this is easily done since its S-joints are separable. This
allows to build a RSSR-loop (fig. 4.7).

The number of independent parameters required to describe such a loop can be
calculated according to eq. 3.3. For a not arbitrarily located base {b} and moving {p}
frame it results in 9 parameters including the two encoder offsets. Using the same
parameterization as for model 54 (eq. 3.9 and table 3.10) would lead to 32 parameter for
the RSSR-loop, which is highly redundant. This may be explained by the arbitrarily
located {B}-frame in model 54 becoming unobservable and by the used concept of
model 54 representing a main joint-link train by the difference and the sum of its two

closure equations.

Thus, a new parameterization based on 9 parameters must be introduced. The
identification of such a single loop, where redundant measurement is provided by the
two encoders, is not a problem. With the six forearms and the six proximal S-joints, 72
different combinations exists to built a RSSR-loop. Each time, 9 parameters can be
identified, which depend on each other. Out of this at most 72x9 parameters some of the
54 parameters can be extracted, such as for example the arm and forearm lengths and
the location of the motor axes relative to each other. Parameters which cannot be
identified this way are the position of the distal S-joints located on the end-effector
because this mechanical part isn't included in the RSSR-loops. However, as could be
seen in paragraph 5.4.3 the sizes of the end-effector are insensitive parameters in the
model 54 and can therefore be set to their nominal values.

The short-cut set-up strongly depends on the topology of the structure to be calibrated.
However, since one of the goals of this work is to search for standard calibration
procedures for parallel topologies, the short-cut approach was not further investigated.
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5.4.6 Conclusion

By implicit calibration based on model 24 and full position measurement an accuracy
improvement of about a factor of 10 could be gained on the mean value whereas the
standard deviation is 7 times improved. For the size of the Delta mock-up (table 5.12)
this corresponds to a improvement of 500 to 50 micrometers for the mean value and for
the standard deviation of 200 to 30 micrometers (table 5.15).

By implicit calibration based on model 54 and full pose measurement an improvement
of the prediction of the orientation of a factor four could be gained, whereas the
improvement of the position is slightly inferior! as compared to model 24. The standard
deviation for the orientation decreased only slightly. For the size of the Delta mock-up,
this corresponds to a improvement of 1/2 to 1/10 of a degree for the mean value and
for the standard deviation to a slight improvement of 1/12 to 1/13 of a degree. To
estimate the improvement gained including angular deviations of the end-effector a rod
of 120 millimeter length may be fixed at the center of the end-effector with its
longitudinal axis coincident with the z-axis of the {P}-frame. The mean value of the
position error of the distal rod tip improves from 3.7 to 0.25 millimeter, which
corresponds to a 15fold improvement in prediction of the position of the distal tip.

The plane/sphere set-up may also be successfully applied if the problem generated by
the multiple minima can be solved. Measurement sets could therefore be split into
several subsets. Each data set could be screened for minima leading each time to a
different set of minima. Overlying these different sets will show a density distribution
of minima. The searched set of parameters may be chosen in the region of the parameter
space with the highest density of minima.

Identification using the short-cut set-up seems to be straight forward. However, it wasn't
experimentally verified. Treatment of the mechanical parts not included in the single
loop is a problem to be solved. Besides, it has to be shown that such kind of multi-stage
calibration based on single-loop structures is suitable to provide a set of parameters
which leads to an accuracy improvement of the multi-loop structure.

IModel 54 is much more non-linear than model 24. Identification of a reliable parameter set becomes

therefore more difficult (see discussion in paragraph 5.4.4).
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5.5 Parameter identification for the Argos structure

5.5.1 Introduction

Table 5.21 contains the nominal parameters (p”) of the Argos mock-up (section 2.4)
according to the parameterization given in figure 3.14a&b and table 3.15 (paragraph
3.5.2):

) model 9
main a0 Q o w ¢
chain
[°] [°] [°] [°] [°]
1 45 - - - R
2 45 - 90 - 90
3 " -45 90 90 90 -90
additional 18 parameters for model 27
main AA AC Aa Ac Y AR R
chain
[mm] (mm] [mm] (mm] [°] [mum] [mm]
1 ( - - 0 0 90 0 110
IR 0 0 0 90 0 110
3 | o 0 0 0 90 0 110

Table 5.21 Nominal parameter set p* of Argos mock-up.

A set of 47 measurement points was collected with the full-pose measurement set-up
proposed in paragraph 4.3.4. The parameter identification of the two models 9 and 27
are both based on this set. However, experiments have shown that parameterization
based on the assumption of not arbitrarily located {b} and {p} is not suitable for

identification. There are two reasons for this:

1) Referencing the external measurement devices perfectly with respect to the not

arbitrarily located frames is impossible.

2) Each of the three mechanically identical chains has a different number of kinematic
parameters, e.g. for model 9 (table 5.21) one, three and five. Such a parameterization
is called asymmetric in contrast to a symmetrical parameterization having the same
number of parameters for each of joint-link train. The chain with the fewest number
of parameters becomes too "stiff" during identification resulting in a poor accuracy

improvement.
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The first problem can be solved by adding two arbitrary frames {B} and {P}. The {B}-
frame will be automatically adapted to the base frame of the measurement device,
whereas the {P}-frame will be automatically adapted to the moving frame of the
measurement device during identification. Unfortunately, decoupling of the
identification for each joint-link train during implicit calibration is no longer possible.

Once these arbitrary frames are added, the second problem can be solved by introducing
a new symmetrical parameterization leading to a decoupling of each joint-link train for
implicit calibration. Unfortunately, the direct problem of the perfect spherical Argos
structure can no longer be reduced to a univariate polynomial without parameter
transformation.

Here only the first problem was solved by adding two arbitrary frames whereas the
parameterization was left asymmetrical in order to keep the direct problem solvable.
According to equation 3.4 a perfect spherical Argos structure needs 15 independent
parameters. Therefore three angles for the transformation between the {b} and the {B}-
frame and another three for the transformation between the {p} and {P}-frame were
added. Due to the construction of the orientation unit for the Argos structure (4.3.3) its
encoders could not be referenced with respect to the device itself and thus three offsets
of its encoders were added, too.

In summary, nine additional parameters for the alignment and calibration of the
external measurement devices were added to each of the two calibration models 9 and
27!, 18 parameters were thus identified for the model 9 and 36 for model 27. These
additional 9 parameters are interpreted to belong to the measurement device and are
therefore not presented in this work.

As for the Delta robot the least-squares minimization was performed using the
Levenberg-Marquardt (LM) method (section C.4) implemented in the optimization
toolbox of MatLab™. A Pentium based PC running at 90 MHz was again the hardware
platform.

1 According to equation 3.3, a complete spatial model with arbitrarily located base {B} and moving frame
{P} requires additional 6 parameters leading to a total of 42 parameters including the encoder offsets of

the orientation measurement unit.
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5.5.2 Full orientation measurement and model 9

For the identification of the parameters of model 9 (eq. 3.26) only the orientation of the
end-effector pose and the three joint angles of the measurement set are needed.

Within 6 iterations and 420 seconds calculation time the LM-method has identified the
following parameter set p' using the nominal parameter set (p" -> table 5.21) as an

initial guess:
model 9
main a0 Q ® @ ¢
chain
[°] [°] [°] [°] [°]
1 || 4402 - - - ;
2 [ 4789 - 91.27 - 89.82
3 | 4217 90.45 91.85 91.18 -87.56
Table 5.22  Identified parameter set p" of model 9 based on implicit calibration.

The orientation error of the end-effector before and after calibration is calculated
according the flow chart given on the left hand side of table 5.9 and presented in figure

5.23.
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Orientation error (model 9 of the Argos)
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Fig. 5.23:  Orientation error of the Argos end-effector before and after calibration.

Table 5.24 shows the improvement factors (table 5.9) as well as the mean value and the
| standard deviation of the difference between measured and calculated values.

direct solution (fig. 5.9 left hand side) | inverse solution (fig. 5.9 right hand side)
Orientation error ['] Joint error [']
AY, | AS, | AD, | |A€ A, | Aa, | Aa; | |Aq
before calibration
mean 28 22 30 99 mean 28 -6.2 28 95
deviation | 81 29 44 40 |}deviation| 81 28 40 37
after calibration
mean |-0321]-0.17] 15 18 mean -0.13 | -0.03 | 0.16 18
deviation | 12 9.7 13 8.5 |deviation| 12 12 12 10
Improvement factor of the orientation Improvement factor for the joint angles

Fo" =54 Floim =52

Table 5.24: Improvement factors and statistical values
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5.5.3 Full pose measurement and model 27

For identification of the parameters of model 27 (eq. 3.22) the entire pose of the 47
collected measurement points is required including the deviation of the position of the

virtual rotation center.

The LM-method identified within 19 iterations and 2395 seconds! calculation time the
following set of parameters ( P') using the nominal parameters (p” -> table 5.21) as an

initial guess:

model 27
first 9 parameters
mai_n a0 Q L0)] @ @
chain
[°] [°] [°] (°] [°]
1 -39.33 - - - -
2 44.17 - 89.57 - 90.43
3 " -40.37 92.44 85.71 90.72 -87.53
and additional 18 parameters
mai’n AA AC Aa Ac Y AR R
chain
{mm} {mm] [mm] [mm] [°] [mm] [mm]
1 - - 2.39 -3.20 94.85 -4.95 105.86
2 - 1.00 4.65 -10.14 92.47 13.562 98.31
3 0.32 -0.05 2.19 1.79 91.89 -0.86 107.85

Table 5.25: Identified parameter set p° of model 27 based on implicit calibration.

The orientation and position error of the end-effector before and after calibration is
calculated according the flow chart given on the left hand side of table 5.9. The
orientation error is not plotted in figure 5.26 since it differs only slightly from figure
5.23, where the orientation error vector of model 9 was shown.

1 The increased calculation time is due to the couplings introduced by the nine additional parameters (see

paragraph 5.5.1).

2Such a high value indicates that the second chain contains significant manufacturing and alignment

errors which may be reduced by refabrication and readjustment of this chain.
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Position error (model 27 of the Argos)
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Fig.5.26  Position error of the Argos end-effector before and after calibration.

The improvement factors (table 5.9 & eq. 5.20) as well as mean value and standard

deviation are given in table 5.27:

direct solution (fig. 5.9 left hand side)
Orientation error ['] Position error [ 4m ] Joint error ']
AV | A, | AG; | |Ag| | Ax | Ay | Az | |A%| | A, | Aa, | Acs | |AT)

before calibration

mean 28 | 22 [ 30 | 99 | 574 (944|688 [958 | 28 | -6.2| 28 | 95

deviationff 81 | 29 | 44 | 40 | 294 | 251 | 271|338 ] 81 | 28 | 40 | 37

after calibration:

mean [-0.04(0.91 |0.21 | 19 |-3.0| -36 | 26 | 285}-0.141090( 1.1 | 18
deviationfl 11 | 13 | 11 [87 J167 11791891130 11 | 14 | 10 | 10

Improve- Fo =53 FP* =34 F" =53
ment

inverse solution (fig. 5.9 right hand side)

Table 5.27: Improvement factors and statistical values
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5.5.4 Conclusion

By calibration based on model 9 and full orientation measurement a accuracy improve-
ment of a factor 5.4 for the Argos structure could be gained on the mean value whereas
the standard deviation decrease by a factor of 4.7. This corresponds to an absolute im-
provement of 1.7 to 0.3 degrees for the mean value and 0.67 to 0.14 degrees for the
standard deviation.

By calibration based on model 27 and full pose measurement the prediction of the posi-
tion of the virtual rotation center improved by about a factor of 3.4 for the mean value
and by a factor of 2.6 for the standard deviation. For the chosen size of the Argos mock-
up this corresponds to an absolute quantitative improvement of 960 to 285 micrometers
for the mean value, whereas the standard deviation drops from 338 to 130 micrometers.

Asymmetrical parameterization and non-arbitrarily located base and moving frames
should be avoided for reliable identification.

5.6 Conclusion

In this chapter identification of kinematic parameters was addressed. In a first section
the calibration problem was stated as a unconstrained non-linear least-squares problem.
Based on a review of standard estimation method in annex C, the Gauss-Newton
method based on singular value decomposition (SVD) as well as the Levenberg-
Marquardt method were proposed due to their robustness.

In a further section it was shown by simulation that implicit calibration works well for
closed-loop structures offering several advantages: Firstly, the identification problem of
multi-loop structures using implicit calibration may be split into identification of the
kinematic parameters of some sub-structures. Secondly, the identification Jacobian may
be differentiated analytically and thirdly, the identified parameter set is the closest to the
accurate parameter set, which is globally valid. Thus, implicit calibration was proposed
as standard calibration method for parallel robots. Semiparametric calibration may be
applied if there is no need for quality control of the mechanical parts of the robot.

In the last two sections the theoretical tools introduced were experimentally tested on
the two examples namely the Delta and the Argos structure showing a gain in accuracy
of 3.4 up to 12.3. This experimental verification proves that the theoretical tools work
well. The two approaches using no external measurement system couldn't be treated in
depth. Simplifications of the measurement step seems to lead to a considerably higher
complexity in the identification step. This observation is also supported by Hollerbach
[93].

The work presented in this chapter shows that improving the accuracy of parallel robots

by calibration is possible.
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6.1 Introduction

In this chapter the question of how to solve the direct and the inverse problem of the
identified calibration models is addressed. In addition the solution for the nominal
model of the Argos structure is presented. These solutions can either be used to
simulate a robot in a virtual environment such as a CAD system for off-line
programming [Mooring 91] or for an implementation of the identified model in the
robot controller. The second task leads to the question of how to generate these
solutions in real-time.

If the nominal models can be solved in a closed form, it is in general due to some
assumptions made about the robot's geometry. A very popular example is the Pieper's
solution of the inverse problem of a serial robot with six degrees of freedom and three
consecutive axes intersecting at a point [Craig 89]. For higher accuracy however
modeling of the slight misalignment of these three axes is necessary. Without the
assumption of three consecutive intersecting axes the problem is no more solvable in a
closed form. An example of a robot with non-intersecting axes is a general serial 6R
robot, where the solution of the inverse problem leads to a polynomial of 16th order
[LeeH 91].

Model 24 of the Delta robot and model 9 of the Argos structure are quite easily
reducible to a univariate polynomial for the direct as well as for the inverse problem.
Model 54 and model 27 however are more difficult to solve. Their direct problem can
also be expressed as univariate polynomial of 40th and 16th degree respectively, but
these polynomials are not suitable for real-time applications, because of their high
calculation time. In order to get real-time solutions for these two models, three different
approaches are of interest:

Aiming at numerical solutions, for example the Newton-Raphson algorithm could be
applied. This algorithm requires an initial guess of the solution, which can be supplied
by solving the nominal model. The algorithm is very efficient for this kind of problem
and needs generally only few iterations (typically three) to converge. In case of multiple
solutions the algorithm has the advantage that the right solution can be found by



124 Implementation

starting the iteration very closely to the solution of interest. However, the convergence
to the right solution is only highly probable but not guaranteed. Commercially available
controllers are generally less powerful than for example the transputer-based system
used to control the direct drive version of the Delta robot [Codourey 91]. Therefore
numerical solutions may be too time consuming for a real-time application.

A second possibility to obtain real time solutions is the numerical precalculation of
solutions of the direct and inverse problem, which are then stored in a look-up table of
the robot controller and used for real-time interpolation. In order to facilitate the
interpolation between the precalculated points, only the differences between the
nominal and the calibrated solution can be stored, which varies less then the solution of
the entire calibration model. A disadvantage of this method might be the limitation of
storage place available and the access time to the storage medium.

A third possibility is to simplify the calibration models leading to low computational
effort. Two contradictory criteria are encountered thereby: The easier to solve the
modified model, the faster it is, but the bigger is also the resulting error of its solution
compared to the original model. Finding such simplified models can be quite laborious,
but has an economical advantage over the other two propositions: If the complexity of
the simplified is comparable to the nominal solution, the controller hardware does not

have to be modified resulting in low manufacturing costs.

To solve model 54 and model 27 possibility one and three will be investigated, whereas

for the other models polynomial solutions will be presented.

6.2 The four basic problems

6.2.1 Introduction

In this section three different direct and one inverse kinematic problem will be solved.
Their solutions will be employed to solve the different models of the Delta and Argos
structure. To illustrate the kinematic problems encountered, a position and orientation
decoupled robot is shown in figure 6.1. It consists of a 6[R2S] structure, where three of
the S-joints located on the end-effector are coincident [Innocenti 92, Patarinski 93].
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End-
effector

Fig. 6.1: Position / Orientation decoupled parallel structure with six degrees of
freedom

The first problem is in here referred to as "general position problem" and consists of
calculating the position of the point P in figure 6.1 for a given set of the first three joint
angles. Once the position of point P is known, it remains to calculate the orientation of
the end-effector, which is called the "general orientation problem". This cascaded
calculation of the pose of the end-effector is only possible because of the very particular
structure of the robot given in figure 6.1. Not taking into account this decoupling effect
would mean to calculate the pose of the end-effector for a given set of six joint angles,

which is referred to as “"general pose problem”.

The fourth and last problem is the calculation of the resulting joint angle for a given
pose of the end-effector, which will be referred to as the “general joint angle problem”.

Table 6.2 shows a small selection of Literature on these four problems:
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problem Solved by: [ possible geometric examples of robots
interpretation (nominal models)
direct problems
position |[Sternheim 87] | intersection point | [Clavel 85] Delta
[Clavel 91] of three spheres | [Thornton 88] GEC Tetrabot
[Pierrot91] [ ;&tgrssrencatll?:i?cfles [Parikian 95] modified Pollard robot
[Innocenti 92] [Vischer 95] PantoScope (annex A.1)
[Wohlhart 94]
orientation |[Gosselin 92] |- fitting a triangle | [Pollard 42] Pollard robot
[Innocenti 92] ::(i)rglléze small [Gosselin 94] Agile eye
[Innocenti 93} [Vischer 95] Argos (annex A.1)
[Wohlhart 94]
pose |[Raghavan 93] |- fitting a irregular | [Fichter 86] Stewart Platform
[Husty 94] hexahedronto | [pierrot 91] Hexa
six spheres
inverse problem
joint angle |[Sternheim 87] } it}tersect_ion ofa |[Clavel 85] Delta
[Pierrot 90] circle with a [Gosselin 94] Agile eye
sphere
[Clavel 91] . .
- intersection of
two small circles
Table 6.2:  Selection of literature on the "general position, orientation, pose and joint

angle problem"

The first three problems are represented by a set of non-linear equations coupled with
respect to the unknown variables, which is typical for the direct problem of parallel
robots. This is in contrast with the inverse problem of parallel robots, which is
decoupled with respect to the unknown variables as long as the number of world
coordinates is equal to the number of joint coordinates as can be seen by examination of
the "general joint angle problem"”.

6.2.2 The general position problem

The "general position problem" was for instance solved by Clavel [91] (table 6.2). A
summary is given in this paragraph since the results will later be used in the sections
6.3, 6.4 and 6.7. According to Clave] the "general position problem" of finding the
world coordinates x,y,z of point P in figure 6.1 can always be expressed as:
x
{E.F.G}{yt+H =—(x*+y+2*) or V,-P+H,
b4

-P".P

i=1.3 (6.1)
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The system of eqs. 6.1 represents the problem of finding the intersection point of three
spheres. The factors E,F;,G. and H, contains the known kinematic parameters as well
as the joint coordinates of the robot.

The right hand side of this nonlinear system of three coupled equations (eq. 6.1) is free
of design parameters and will therefore vanish for each difference of two equations.
Thus, a linear system of equations can be established, which has linearly dependent

rows:
X
E-E, F-F, G-G, H-H,
E,~E F,-F, G,—-G, H,—-H,|{ }=0
b4
E3—El F3_Fl G3—Gn H3_H1 1
and solved for x and y as a function of z:
x=&z+—1!3— and y=£“—z+—N—5 (6.2)
N, N N, N

with the following determinants as factors:

E-E, F-F, 0
N =|E,-E, F,—F, 0= EF,-EF,+E,F,-E,F,+E,F,-E,F,
E,—~E F,-F 1
0 F-F, G-G,
N,=00 F,-F, G,-Gl|= FG,-FG,+F,G,-F,G, +F,G, -F,_,
1 F,-F, G,-G,
0 F,-F, H-H,
N,={0 F,-F, H,-H(|= F,H,-FH,+F,H,—F,H, +F,H, - F,H,
1 F,—-F, H,-H,
E-E 0 G -G,

N,=|E,-E, 0 G,-G,|=-EG,+EG,-E,G,+E,G, - E,G, +E,G,
E,—~E 1 G,-G, (6.3)
E-E, 0 H-H,

N,=|E,-E, 0 H,-H,=-EH,+EH,-E,H,+E,H, —E,H, +E,H,
E,-E 1 H,-H,

The last step consists of substituting eq. 6.2 into the first equation of 6.1 and solving the
resulting quadratic equation for z as:

_ ~ME\M?+4L0 (6.4)

2L

42
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with the factors:

L=N?+N?+ N}

M = N,(E\N, + F,N, + G\N,)+ 2N,N, + 2N,N; (6.5)
Q= N,(E,N; + F,N;+ HN,)+ N. + N}

The "general position problem" is now solved by eqgs. 6.2 and 6.4 with the factors 6.3
and 6.5:

. = —M*\M?*+4LQ
12 2L
N, —eq. 6.3
S x= &z % with the factors |, - (6.6)
N, N LM,Q —eq. 6.5
N4 NS
y=—2z+—
Nl 1

It has either no or two sets of solutions ( x,y,z). As already mentioned a geometrical
interpretation of the system of egs. 6.1 is finding the intersection of three spheres,
which has not more than two points.

6.2.3 The general orientation problem

Gosselin [92] solved the "general orientation problem” by means of the trigonometric
identity. A similar problem is treated in annex D.2.1. Innocenti [92] employed the
method of resultants as explained in annex D.2.2. In this section the solution of
Innocenti [93] is reviewed and an enhancement proposed for the symbolical
representation of the factors of the univariate polynomial. The solution of the “general
orientation problem” will be used in section 6.6 and 6.7. According to Innocenti the
"general orientation problem” can always be established with only two unknown angles
describing the orientation of the end-effector in figure 6.1 if point P is assumed to stay
fixed with respect to the base:

my  my, my| [cos(d;)

{cos(ﬁz),sin(ﬁz),l}- my My my|-<sin(9;)p=0

my My my 1 q, 'ﬁ'-qs':o
K

[k K ke '008(193) > q -
{cos(D,).sin(D,)1}-| ky Ky, Ky |-4sin(D;) =0
ky Ky k] ]
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The system of eqs. 6.7 represents the problem of fitting a triangle to three small circles.
The factors m; and k; contains the known kinematic parameters as well as the joint
coordinates of the robot.

Eq. 6.7 is a non-linear system of equations coupled with respect to the two unknown
angles 1,, 9, containing transcendental functions. In order to eliminate these functions,
a half tangent substitution (annex D.2.2) is performed on eq. 6.7:

—Mu M, M, u32
{uzz,u—z,l}' M, M, Myiqu =0 _
[:Max M, M, 1 or EZT~:—1\iI-ﬁ3 =0 6.8)
K, K, Kj| [w’ u,” - K-u,=0
{uzz’“'z’l}' K, Ky Kylqu =0
K5 Ky K 1
with the factors:
M“=m”+m33—( "'”‘13) My =my +my;— (mn'*‘mls);
My =my, +my +(my +mys ), My =my,+mg —(my, +my, );
M, = (mzz 12 )’ le = 2(”’23 - mzx); (6.9)
M, = 2(’”3* + ml2)’ My = 2(’"23 +m21);
M22 =4m,,

for the K- factors: M—>K and m—>k

To reduce the polynomial system of eqs. 6.8 to a univariate polynomial in u,, the
method of resultant [Annex D.1] is applied:

u,’ M, §,"'M, i, M, 0
= = 0 oM, o’ M, =M
Resfi, Ma.a Kum)=| , - 7, = T BTy (6.10)
o, K, u K, u K; 0
0 ﬁzr'Kn ﬁzT'Kiz Ezr’Kis
where M, , and K,J are the column vectors of the matrices M and K.

Expansion of eq. 6.10 leads to:
(@, M, M, -5, )u,” K, K, -u,)+u
K )

S
3'Mi3 ‘W R, 'Ku'Ku 0,
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Further expansion would lead to an 8th order polynomial in u, :

Pt + P, + P’ + P, + Pw,* + Py + Pw,” + Py, + Py =0 (6.12)

The symbolical derivation of the P-factors is cumbersome and can hardly be found
without a software for symbolic calculations. The whole polynomial consists of 423
summands, each of which is composed of a multiplication of four elements of the
matrices M and K. This explosion of the factors is well known when trying to
reduce polynomial systems of equations to a univariate polynomial [Nanua 90,
Innocenti 93 Husty 94]. The factors in the "general position problem" given in eq.
6.3 and 6.5 confirm this tendency to explode.

Here, a different method will be developed to symbolically derive the factors of the 8th
order polynomial. Eq. 6.11 is composed of seven summands having the general form
(ﬁr-_é-ﬁ)(ﬁT _ﬁl_l) Each of the two factors represents a 4th order polynomial written
in matrix form. These matrices are pre- and postmultiplied by the same vector.
Therefore, the matrix can be converted to a vector:

-~

. G, G, G; u’
(ﬁ2r-§-ﬁ2)={u2,u,l}~ G, G, Gyliu ={u4,u3,u2,u,l}-4
Gy Gy Gyl

SRR
1
=]
Iy
N‘
"
Q
)
=

r

where i of the vector Ui indicates the highest power of u.

The relation between the G- and the P-factors is given by the addition of the matrix
elements on lines parallel to the secondary diagonal, yielding:

r G” N ’E\

_ Gll GI2 G13 G21 + G12 E
G= Gy Gy Gy|=13Gy + Gy + Gyp=P=P; (6.14)

G3l GBZ G33 G32 + G23 51_

L Gy [P

Using eq. 6.13 and 6.14 the following conversion is performed:
(ﬁz’E-m)(az’-ﬁ-az):m’io P74 (6.15)

The right hand side of eq. 6.15 has again a matrix form and will be converted to a
vector form using a generalized equation similar to eq. 6.14, which can be considered a
function applied to a matrix to extract a vector. It is therefore referred to as a one-
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argument Sh-function capable to shrink (Sh) a matrix to a vector according to the
definition given in annex B.3. Rewriting eq. 6.15 and applying two-times the Sh-
function yields:

(EZT-E-M)(EZT-ﬁ-ﬁ2)=ﬁ4T-Sh(—6)-Sh(ﬁ)T-ﬁ4='ﬁ87-Sh(Sh(E)-Sh(ﬁ)T) (6.16)
The right hand side contains the factors of the 8th order polynomial.

With the help of the new Sh-function the gap between eq. 6.11 and 6.12 can now be
closed by repetitive application of this blow up and shrink action:

N

Sh(
r=Sh —
-Sh(K, -K,,") + (6.17)

B EREEEEE

The introduction of this new function was initiated by observing a repetitive appearance
of the same pattern when trying to reduce 6.11 to eq. 6.17. Expansion of eq. 6.17 would
lead to the same 423 summands already mentioned. The question arises about the
fastest way to calculate the P-factors. A fully expanded version of eq. 6.17 consists of
1269 multiplications and 414 additions. By introducing the Sh(Shrink)-function the
number of operations could be reduced to 261 multiplications and 198 additions.
However, the fastest possible way to calculate the P-factors is by directly substituting
the numerical values into eq. 6.10 and collecting the terms for all powers of u,. Then,
the speed of calculation is mainly determined by the collecting operation.

After calculating the P-factors (eq. 6.17), the 8th order polynomial of eq. 6.11 can be
solved numerically for u,. Some of the solutions may be complex. Only the real
solutions (n) have physical meaning. It remains the back-substitution in eq. 6.8 and to
solve for u;:

The solution of the "general orientation problem" can be summarized as:
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g
2’}’;.14.2’=0—>u2k eR ;fork=0.n<8

j=0

M 5, 5K 5.5 > 69

{8, =2arctan(u, ) P, > 617

B, —2arctan[ % (g g gﬁ F“T)‘ﬁz*]
b u,” (M, K,"-M, K,) 1, |

(6.18)

It has eight sets of solution (9,,1},) at most. As already mentioned, its geometric
interpretation is a problem generally encountered in spherical kinematics [Chiang 92] of
fitting a spherical triangle to three small circles. It is interesting to compare to the
equivalent planar problem, which corresponds to fitting a plane triangle to three circles
or three lines. Both cases are very well explored and have six and two solutions,
respectively [Merlet 90, Hunt 78, Dijksman 76]. Another remark concerns the
geometric interpretation of the "general position problem", that was shown in paragraph
6.2.2 to be a problem of intersection of three spheres in space, which is a symmetrical
interpretation. The orientation problem could only be solved with an asymmetrical
parameterization (paragraph 3.5.2). For an asymmetrical interpretation of the position
problem one of the three spheres will be selected and the remaining two represented by
their intersection circles with this sphere. Thus, the position problem can also be
interpreted as a problem of spherical kinematics to find the intersection point of two
small circles. This problem can therefore also be parameterized using the two
coordinates needed to describe the unknown intersection point on the sphere.

6.2.4 The general pose problem

According to Wampler [Husty 94] the "general pose problem" can always be stated
with the help of eight homogeneous world coordinates describing the pose of the end-
effector (X) in figure 6.1 as:

X7.M X=0

with

X={X.X,.%,X.%. %%, %) i=1.7 (6.19)

X,
M-|2 B
BiT Ci

where the 4x4 blocks _K—,.,_ﬁ—,. are symmetrical and skew-symmetric, respectively and
contain the design parameters of the robot as well as the joint coordinates. The C,-
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block is the 4x4 identity matrix. The seventh equation is free of design parameters
and the following relation is valid:

=C = 0:  4x4 Zero matrix

A,

= = (6.20)
B =121 4x4 Identity matrix

The system of equations 6.19 represents the problem of fitting a irregular hexahedron to
six spheres. Wampler [96] has shown that the number of solutions drops from 128 for
the general case to 40 due to the special structure of the matrices M,. This result was
also found by Raghavan [93] using numerical techniques.

Wampler and Husty found simultaneously, that the "general pose problem" can be
described with seven coupled quadratic equations as given in eq. 6.19. Its derivation is
based on the mapping of spatial movements in a higher dimensional space. A
movement is the set of poses which a moving body attains. For planar movements this
image space is three dimensional and Euclidean [Bottema 79, Ravani 83]. For spatial
movement Study introduced a seven dimensional, quasi-elliptical image space called
"Soma"-space [Ravani 84, Husty 94]. A point in the Soma space has eight
homogeneous coordinates given by a dual quaternion. A dual quaternion [Castelain 86,
Milos 95] is composed of quaternions and dual-numbers. Quaternions are an extension
of the complex numbers and therefore sometimes also called hypercomplex numbers.
They were introduced by Hamilton to describe rigid body rotations in space with the
help of Euler parameters [Branets 73, Funda 88, de Casteljau 87]. Dual-numbers were
introduced by Clifford and are well suited to describe a rotation about and a translation
along a vector, which results in a movement of a screw along this vector when
combined [Dimentberg 65]. This leads to a different point of view for eq. 6.19:

Each possible pose in space is represented by a unique point on a six-dimensional
hypersurface embedded in the seven dimensional Soma space. According to Husty this
hypersurface is called "Study's quadric". Study's quadric is given by the seventh
quadratic equation in the system of egs. 6.19 together with the definition in eq. 6.20.

The other six equations are six-dimensional hypersurfaces, too. They represent a
movement of a constraint rigid body . The constraint results from a point of the moving
body being restricted to travel on the surface of a sphere. This corresponds to cutting
off five of the six connecting rods between the base and the end-effector (fig. 6.1).
Wampler and Husty found a way to represent a constraint hypersurface fulfilling this
spherical condition. In planar kinematics this corresponds to a movement of a rigid
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body constraint, where one of its points stays on a circle. For this case Bottema [79] has
given the constraint surface in the three dimensional image space.

It remains to explain the exact meaning of the vector of unknowns X in eq. 6.20. This
vector is composed of the eight parameters defining a dual quaternion. This dual
quaternion contains the coordinates of the unknown intersection point of the six
hypersurfaces located on Study's quadric.

In paragraph 3.3.2 a much simpler parameterization for the same geometrical problem
was chosen, leading to a system of six equations for six unknowns. Unfortunately, this
system of equations is only useful for numerical solving. To extract a univariate
polynomial it seems to be a dead end which misguided researcher over many years. It's
a very characteristic difficulty in kinematics that the choice of the parameterization
creates a system of closure equations which is either reducible to a univariate
polynomial of minimal degree or not. This was also the motivation for Wampler and
Husty to derive eq. 6.19, because it can be reduced to a univariate polynomial as shown
by Husty. He introduced the following substitution of variables as:

T

< X, X, X

X = k,m,p,l}’={—',—l,—3,1} (6.21)
{ X, X, X,

-~ ~ o~ ~ ~ 1T
The dual part will also be collected in a vector X ={%,,%,,%,,%,} . Substitution of
both vectors into eq. 6.19 leads to:

— — ¥ X T.—.. X
[X"B, X7A, x}{ X}=—X—;—X i=1.7 (6.22)
X, 4

The right hand side is free of design parameters and any difference between the first six
equations will therefore be linear in the five variables collected in the column vector on
the left hand side. The situation is similar to that of the "general position problem". The
seventh equation is inherently linear in these five variables because its right hand side is
equal to zero. The resulting system of five differences plus the seventh equation is
overdetermined and must be made linearly dependent in order to obtain non-trivial
solutions for the five variables. On the one hand side this leads to the condition that the
determinants of two 5x5 subsystems of differences plus the seventh equation must be
equal zero. On the other hand, one of these two subsystems of equations can be linearly
solved for the five variables and back-substituted into one of the constraint surfaces
given in 6.19. Both steps lead to polynomials containing only the three unknowns given
in X. These polynomials can further be treated with the method of resultants (Annex



Implementation 135

D.1) yielding two univariate polynomials of 200th order. Their greatest common
divisor is a polynomial of 40th order. Due to the already mentioned symbolic explosion
(paragraph 6.2.3) the factors of this polynomial are only available in a numerical form.

Husty's algorithm was applied to solve the direct problem of the calibration model 54 in
order to investigate how close other solutions approach the two solutions, which are
parallel to the base (fig. 6.3). This is an important question if the direct solution should
be taken for identification (chapter 5) as for serial robots. Numerical methods are
employed to obtain the world coordinates of model 54 using the direct solution of
model 24 as starting values. If another solution approaches closely the searched
solution, the numerical algorithm will once find the one solution, but slight variation of
the design parameters will lead to the other closely located solution. This causes severe
problems during identification due to the introduction of this solution jumping.
However, it could be shown that other solutions approach closely the parallel solution
only in a very small region around the geometric singularities of the parallel structure.
Otherwise they stay in orientation far away of the searched solution. Far from
singularities the convergence of the numerical algorithms to the searched solution can
therefore be guaranteed.

Figure 6.3 shows six poses of the end-effector of a Delta robot without geometric
deviations, following a linear trajectory approaching a singularity located in the lower
right corner. It shows two solutions obtained with Husty's algorithm. One is the
searched solution, where the end-effector remains parallel. The other one possibly
disturbs the numerical convergence to the parallel solution. In the lower right corner the
robot is very close to a type c) singularity one of four different types of direct
singularities [Fichter 86], which occurs for the Delta robot [Clavel 91]. A direct
singularity is a bifurcation of solutions of the direct problem, thus for the same set of
joint angles two or more coincident solutions exist. At this singularity the structure will
gain as many degrees of freedom as solutions join the parallel solution. Moving out of
the singularity these solutions - for the chosen singularity type c) there are two - will
start to separate. The development of both solutions was followed in order to see how
fast they separate. This shows that for the last set of joint angles the disturbing solutions
has already left its working volume. At singularities the mechanisms can be forced to
change from one configuration space into another one. It would be of interest to find a
parallel structure with physically interesting configurations on both sides of a direct
singularity, since this robot could work task dependent in its first as well as in its
second configuration. This would be a powerful sales argument for such kind of parallel
robot like selling one robot for two.
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Fig. 6.3: Movement of the end-effector for a simulation of the Delta robot
approaching a singularity of type c). Solutions of two configuration spaces
are shown.

For the sake of completeness it should be mentioned that a second type of singularities
occurs if solutions of the inverse problem join each other [Reboulet 88, Gosselin 88]. In
this case the mechanism looses as many degrees of freedom as solutions coincide with
the searched solution of the inverse problem. This is therefore referred to as inverse
singularity [Guglielmetti 94]. Figure 6.3 shows only two of the solutions obtained with
Husty's algorithm for the Delta robot. In fact, between 8 and 16 reel solutions were
found forming clusters around the two solutions obtained by solving the "general
position problem" for a perfect remaining spatial parallelogram (model 24). In annex
A.2 an entire set of such solutions (model 54) is given for a single set of joint angles.

6.2.5 The general joint angle problem

According to Pierrot [90] the "general joint angle problem" can be described separately
for each R2S joint-link train:
a; cos(6,)+b, sin(6,)=c; (6.23)

with the factor a,b,c depending only on known parameters (geometry, pose of the
end-effector, encoder offset) of the robot.
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Eq. 6.23 represents the problem of finding the intersections of a circle with a sphere.
The transcendental eq. 6.23 in the unknown joint angle 6, is of a well known type [Paul
81, Craig 89] and its solution can either be found by a half-tangent substitution or by a
circular substitution. Care has to be taken not to introduce mathematical singularities
[Codourey 91, Clavel 91]. For that reason it is recommended to use the circular
substitution [Vischer 95] leading to the following result:

0.',_2 = arctan 2(ci’i V bi2 + ai2 - Ci2 ) —arctan2(a;,b;) i=1..3 (6.24)

The "general joint angle problem" is solved by eq. 6.24. It has no or two solutions for
each joint-link train.

6.2.6 Conclusions

In this section the solutions for three direct problems, the "general position, orientation
and pose problem", has been presented. Note the fast increasing difficulties upon going
from the first to the last of these problems. The solution of the "general pose problem"”
can be interesting to explore a model as done for model 54 of the Delta robot, but it is
much too slow for a real-time application. The inverse "general joint angle problem" is
quite simple compared to the solution of any of the direct models. Both, the "general
joint angle problem" as well as the "general position problem", can be interpreted as the
intersection problem of a circle with a sphere. This means that the underlying equation
of both problems is given by eq. 6.23.

6.3 Solving model 24 of the Delta robot

6.3.1 The direct problem

The solution of the direct problem of model 24 provides for a set of joint angles no, one
or several sets of world coordinates: 8,,6,,8;, — x,y,z. By comparing figure 3.11 with
figure 6.1 it's easy to see that the direct problem of model 24 given in eq. 3.16 is a
"general position problem" (paragraph 6.2.2). Thus, eq. 3.16 will be rewritten as:
P".P-2C7-P+C/-C,=LbV
with i=1..3 (6.25)

C= :(ﬁ,'*'aL_a,)

-
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Collecting factors E, F, G, H given in the definition of the "general position problem"
(eq. 6.1) yields:

i=1.3 (6.26)
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Substituting these factors into eq. 6.1 the solution of the direct problem of model 24 is
given by eq. 6.6 having two sets of solutions at most.

6.3.2 The inverse problem

The solution of the inverse problem provides for a set of world coordinates no, one or
several sets of joint angles: x,y,z — 6,,6,,0;. Model 24 given by eq. 3.16 is decoupled
in the unknown variables 6,,6,,6,, which is typical for parallel robots. This simplifies
the solution enormously since each of the non-linear eq. of 3.16 representing a R2S
joint-link train can be treated separately. This is exactly the "general joint angle
problem" treated in the last section. Expanding eq. 3.16 and collecting the rotation
matrix a. containing the unknown joint angle leads to:

2(P" T +D7)QTa+P P-2P" T, D,+D/ D+La, La,=Lp’ i=1.3 (627)

Vector Q,.La, can be rewritten as:
cd, -s0, 0| |Lq, La, -La, 0]|c6,

(24 ix iy i

Xa,=|s6, c0, O{La,;=|La, La, Of{s6,t=La-Q, i=1.3 (6.28)

‘ i iy

0 0 1j(0 0 0 0]

<l

This procedure of swapping between a rotation matrix and a vector is repeatedly used in
this work and has therefore been defined as a two-argument "Sw"(Swap)-function (cf.
annex B.2). It contains the unit-vector on the rotation axis as a first argument and the
vector to be swapped as second argument. Eq. 6.28 can therefore be rewritten as:

Q. -La, =sw(z.Ia)-Q i=1.3 (6.29)

Collecting factors a,b,c given in the definition of the "joint angle problem" in eq. 6.23
yields:

bt =2(P"-T.+D7) Sw(z.Ia,
{a.b.e}=2(P"-T,+D])-sw(z.La)) i=1.3 (6.30)

¢,=Lb*—¢,+2P"-T,-D,-P"-P-D/ -D,-La, -La,
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The solution of the inverse problem of model 24 is given by substituting the factors
defined in eq. 6.30 into eq. 6.24. This leads to two solutions per joint-link train at most,
that is eight distinguishable configurations.

6.4 Solving model 54 of the Delta robot

6.4.1 Introduction

Model 54 is given in eq. 3.12 together with table 3.10. The solution of the direct
problem provides for a given set of joint angles no, one or several sets of world
coordinates 6,,6,,0, — x,y,z,a,B,7, whereas the solution of the inverse problem for
a given end-effector position has no, one or several sets of joint and orientation angles
x,y,2 > 6,,6,,6,,a,B,7y. Examining the system of egs. 3.12 shows that the direct
problem is represented by a system of six non-linear equations coupled with respect to
all six unknowns, which is characteristic for parallel robots. New is, however, that the
inverse problem gets coupled, too. Each unknown joint angle appears in both of the
equations representing a main joint-link train, whereas the unknown fixed angles
describing the orientation of the end-effector appear in all of the six equations.

For the direct problem, which represents a "general pose problem" (paragraph 6.2.4),
the reduction to a univariate polynomial leads to a 40th order polynomial. For the
inverse problem the order of the polynomial, which indicates the non-linearity of the
underlying system of equations, is still an open question. However, an indication might
be obtained by linearizing the rotation matrix for small angles. This corresponds to the
assumption that changes of the end-effector orientation are small with respect to the
base when sufficiently far away of singularities. In this case the order of the direct
problem drops to ten whereas the order of the inverse problem is below 256. This is an
indication for the inverse problem being more non-linear and thus even more difficult
to solve than the direct problem, one of the most complicated, polynomial solution
known today.

This approach will not be further discussed. Two different approaches are introduced
instead. Both approaches will be introduced since none of them satisfies both of the
given constraints, namely fast solvability and good fitting of the full model 54. For the
implementation of the calibrated model 54 one of the two approaches can be chosen
depending on the hardware of the controller.
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The first approach is based on a linearization of the entire set of the six closure
equations (G) by building the Jacobian (JG), whereas the second approach uses the
splitting of the closure equations into set G1 and G2:

simplifications | algorithm | DP | IP Flow Charts of the different algorithms
(representation of the solution of DP only)
Linearization | linearized| 2 | 23 P R
around the entry | iterative
point : Q G(Pi,Ri ) = - JG(Pi,Ri) (APi,AR )
Pi+ APi,Ri+ARI
P.R
Substitution of | cascaded | 2x8 | 23x8 R
the coupling iterative , '
terms Q G1(Pi) = 0| gl GaRi) = o}-H
G1(P, R*)
G2(P*, R) PR

Table 6.4: Algorithms proposed for the solution of the direct (DP) and the inverse
problem (IP) of model 54. Given are the number of solutions, which can
be produced by the algorithms depending on the choice of the starting
values or on the solution forwarded to the next set of equations.

The first algorithm is the widely used Newton-Raphson procedure. As mentioned
earlier it works very well for that kind of problem. The solution is generally found
within three iterations. A good set of starting values (P*, Q*) can be gained from the
nominal model or from model 24, whereas R* can be set to zero. To accelerate the time
of calculation Schwarz [86] proposed to drop the time-consuming updating of the
Jacobian in each iteration step using instead the Jacobian calculated for a "good" set of
starting values. Another possibility is given by skipping iteration, taking into account
small errors of the result. This is of interest because of the 6x6 Jacobian getting
relatively easy to invert formally for the initial guess (R*=0):
{P,R} = {P*,0} - JG(P*,0)"' G(P*,0) (6.31)

The second algorithms is based on the fact that the first set of eqs. G1 of the direct
problem is reduced to a "general position problem" for a given orientation (paragraph
6.2.2), whereas for a given position the second set of egs. G2 is reduced to a "general
orientation problem" (paragraph 6.2.3). For the inverse problem the first set is reduced
to a "general joint angle problem" (paragraph 6.2.5) once the orientation is known,
whereas the second set is reduced to a "general orientation problem”, too, once the joint
angles are known. Due to the complexity of the orientation problem it might be better to
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solve set G2 using a Newton-Raphson procedure or to linearize the rotation matrix for
small angles:
cBey sosPcy—casy casPcy+sasy 1 -y B
R=|cfsy sasPsy+cacy coasPsy-sacy|—|y 1 =-a|=AR (632
-sp sacf cocp - a 1

This matrix is well known in robotics. It is the sum of the identity matrix and a skew
symmetric matrix [Paul 81]. AG2 indicates that the rotation matrix of the set G2 is
linearized according to eq. 6.32. AG2 can be linearly solved for the unknown
orientation angles. In order to reduce the time of calculation, this algorithm can be used
without iteration, too. However, the result is not satisfactory since the first step is
mainly needed to get to the solution of the nominal problem. A final proposition for the
creation of a very fast, but rough cascaded solution is to drop all terms of magnitude A
in the first set G1 and all of magnitude A’ in the second set AG2 , which reduces sets
G1 and AG2 to:

setl: CB/ -CB; = Lb?
set2: CB/-Ad, = Lb*ALb,

with (6.33)
CB,=P-T,(D,+Q Ia)

Ad, = ARxT, -d - T,(AT, xd,+4T,-Q, -AC))

with the matrices. vectors and scalars given according to table 3.10. AR,AT are
column vectors containing small rotation angles (see also eq. 6.38)

The number of parameters involved in eq. 6.33 is reduced to 45 due to the vanished b,-
vector. The first set is identical to model 24 and can be solved as described in the
section 6.3, whereas the second set gives a rough approximation of the orientation of
the end-effector and the solution similar to solution of the set AG2 for the orientation,

treated in this section.

The first algorithm can be directly applied to eq. 3.9 or 3.12. For the second algorithm
solutions have to be provided for the direct and inverse problem of set G1 if the
orientation is known, and for the orientation problem of set AG2 if the position
respectively joint angle are given as described in the following section.
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6.4.2 The direct problem of the set of equations G1

Expanding the system of equations 3.12 and collecting the unknown position vector P

leads to:
P"-P+2v - P+¥/ -V, +Ad] - Ad, = Lb* + ALb’

with

"i'b'_ i'(Bi'*'ﬁi'*'Ai'Qi'ITai

i

|
=

<l

) 1=1..3 (6.34)

:

Aaizﬁ" i'ai_i'A—_T—-'(ai-*-ﬁi'Aéi)

=3l

where R’ indicates that the orientation of the end-effector is given. The factors of
the input equations of the "general position problem" (eq. 6.1) are given by:

{E‘i’}:li’Gi}:zviT’ 6
o i=1..3 (6.35
H =¥ -v,+Ad" - Ad, - (Lb* + ALD?) 1 (63

The solution of the direct problem of the G1 set is given by substitution of the factors
given in eq. 6.35 into eq. 6.6. This leads to two solutions at most.

6.4.3 The inverse problem of the set of equations G1

Expanding the system of equations 3.12 and collection for the unknown joint angles

contained in the rotation matrices Q, leads to:

_2(71"i‘ATi’Gi'E+Wi'Ti'Ai'Qi'AC)'*'

vi.v.+w  -w +L_a,~T ’IE'FAE,T 'Aéir = Lbiz +ALbi2
i=1..3 (6.36)

where R’ indicates again that the orientation of the end-effector is given. Collecting
the factors given in the input equations of the "general joint angle problem” (eq.

6.23) leads to:

{a,b,¢,}=-2(7, T, AT, -Sw(z,a,)+¥, T,-AT, -Sw(z,AC)))
i=1.3 (6.37)

T —  —T — .53 —7T 7+ - -
¢;=Lb?+ALb? ~(¢,+¥] ¥, +W -W,+La La,+AC/ AT,

The Sw-function is defined in annex B.2, provides a place swapping between a vector
and a rotation matrix. The inverse problem of the G1 set is now solved by substitution
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of the factors given in eq. 6.37 into eq. 6.24 having no or two solutions per joint-link
train.

6.4.4 The orientation problem of the set of equations AG2

By postmultiplying the linearized rotation matrix given in eq. 6.32 with an arbitrary
vector the following relation holds:

1 0 0l (0 =y BHIv. [v.| [&] [v.

ARV=(|0 1 Of+|y 0 —a|Hv, b={v 1+ Bix{v,t=+ARXV  (6.38)
00 1||-B a O0]|/\v,] (v.|] |eJ |v

4 Z k4

where X represents a cross product.

Substituting eq. 6.38 into the second set of equations of model 54 given in 3.12 and
collecting the vector AR, which contains the three unknown orientation angles, yields:

1=1..3 (6.39)

where P* and Q" indicate that either the position or the joint angles are imposed.

The system of equations given in 6.39 can be linearly solved for the unknown joint
angles, which leads to a unique solution for the orientation problem of set AG2.

6.4.5 Conclusion

The second algorithm reaches its fixed point typically after three iterations, too, but an
error remains due to the linearization of the second set G2 to AG2. Compared with the
first algorithm the second one needs fewer iteration steps to get very close to the
solution. One and a half iteration steps (two times evaluation of G1, once evaluation of
AG?2) are in general enough to get sufficiently close to the fixed point.
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6.5 Solving the nominal model of the Argos structure

6.5.1 The direct problem

The nominal model] is given by eq. 3.26 and table 3.18. For a set of given joint angles
the solution of the direct problem supplies no, one or several sets of Euler angles
o,,a,,0, = 9,,9,,9, Expanding the first of the equations given in 3.26 leads to:

s(0,)*(s( 0, ey, + 0,) — (D, Jxs(o, + 0,)) =0 (6.40)

where ¢ and s are abbreviations for the cosine and the sinus functions. For simplicity
the given joint angle and the encoder offset will be collected in a single variable:

oy = o, + a0, i=1..3 (6.41)

Rewriting eq. 6.40 yields:
s(3,)*s(8, — 0, ) =0 (6.42)

To satisfy this equation the first or the second factor can be zero. The first factor being
zero leads to the solution of ¥, , =0,7, which are independent of the motor angles.
This corresponds to a direct singularity if the S-joint is located on the first motor axis.
In this case the first pantograph can be freely twisted without influencing the orientation
of the end-effector. This kind of singularity can also be found for the other two
pantographs [Gosselin 95]. The second factor being zero leads to the solutions of
Y,
¥,, 9, correspond to the angles of the first two joints (motor and passive R-joint) of the

=0,y + 7. Due to the chosen parameterization, the first two Euler angles

first joint-link train. They describe the location of the S-joint fixed to the first
pantograph. If both by angle can vary in a full-circle interval, this description becomes
redundant. Thus. set ¢, + 7,—%}, would describe the same position of the S-joint as
o,,,9,. The second solution can therefore be dropped:

Y =0y, (6.43)

According to this equation the first Euler angle needed to describe the orientation of
the end-effector is equal to the angle of the first motor plus its offset. The entire
parameterization is chosen in such a way that eq. 6.43 gets valid yielding this simple

equation.

Expansion of the remaining two equations of the nominal model given by eq. 3.26 and
table 3.18 leads to:
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s(®;)p=0
1

) s(9,

(‘(132)\ ' 0 ‘(am o‘02
3 S(ﬁZ) [ 0 _C(aoz
L 1 J S(am)s(aoz) qu,ﬁ,qs__.
s \NT or —TF - _ (644)
C(ﬂz) _S(am)s(aos) 0 133 q, ‘k-q;=0
0
0

[—y
-
n'e

c(otys) 0
0

—c(0tg;)s(0tg3)

This corresponds exactly to the input form of the "general orientation problem" in
€q. 6.7. Due to the orthogonal chosen motor axes (W,) and the vectors pointing to the
S-joints (V,), the third columns in the coefficient matrices are zero vectors, which
leads to a great simplification of the results compared to the "general orientation
problem" (paragraph 6.2.3) and will therefore be solved separately by rewriting the
two equations given in eq. 6.44. The derivation of the solution uses the results of
Gosselin [95].

(qu.ﬁ”) (9,)+ (‘12 : nz)s(63)=0
(qzr ’ Eil)c(ﬁ3) + (azr ' Ei2)s(ﬁ3) =0

where M, and k; are the column vectors of the two coefficient matrices.

(6.45)

The condition for the system of equations 6.45 to be fulfilled identically is that the
determinant of their factors vanishes:

(@, m, )@, k,)- (g, -m,)q, k,)=0 (6.46)
Expanding and rearranging the result leads to:

sin(®, )(C, cos(®,) + C,sin(®,)) =0 (6.47)
with the factors C given by:

C, = —cos( 0y, )sin( 0, )cos( @y ) — sin(ay, )cos( @y, ) sin(at, ) 648)

C, = cos(aty, Jcos(Qy; ) — cos( oty )sin( @y, )sin( ey, )sin( @y, )

The first factor of eq. 6.47 leads again to the singularities on the motor axes, whereas
the second factor can be solved for the second Euler angle. Back-substitution into the
first equation of 6.45 leads to the final solution of the direct problem of the nominal
model of the Argos structure, which has always four solutions:

U, =0
5| 9, =arctan2(xC,,*C,);

193“ = arctan Z(iﬁzu

m;, , - 6.44

C, = 648 (6.49)
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6.5.2 The inverse problem

The nominal model is given by eq. 3.26 and table 3.18. For a set of given Euler angles
the solution of the inverse problem supplies no, one or several sets of joint angles
3,,9,,%;, = o,,a,,0, and is based on a derivation given by Gosselin [95]. The system
of egs. 3.26 is decoupled in the unknown joint angles and can therefore be rewritten as:

a, cos(a, +a0.)+b sin(q,+a0)=0 i=1..3 (6.50)

where the factors are given by:

a, =s(8,)s(8,), b =-c(0)s(9,)

a, =-s(8,)s(8;), b,=s(3)c(V,)+c(8,)c(3,)s(D;) (6.51)
a, =5(8,)c(D5), by =—c(8,)s(0,) - s(8, )e(B, )e( D)

Eq. 6.50 can now be solved for the unknown joint angle yielding always two solutions
per joint-link train:

a;,, = arctan2(%a,,¥b;) - a0; i=1.3 (6.52)
Figure 6.5 shows the two different solutions for one pantograph. For the mock-up of the
Argos structure the passive R-joints can only move within a range of zero to 7. Thus,
only the first solution is reachable within the limitations of the joints.

Fig. 6.5: The two solutions of the inverse problem of the Argos structure

Distinction of the first and the second solution is based on W,,u,,V, - vector having to
build for the first and second joint-link train a left-handed system and for the third joint-
link train a right-handed system. The constraint for a right-handed system is, that the
triple product of the three vectors is positive:

(W, XW,).V, > 0—2222 5 b cos(@; + a0,) —a;sin(e;, +@0,)>0  i=1.3 (6.53)
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which leads together with eq. 6.50 to a unique solution for the inverse problem of the
nominal model of the Argos structure:

@, = arctan2(a;,—b,) - a0;

) azzarctan2(a2,—b2)—a02; a,b; = 6.51

o, = arctan2(—a,, by ) — a0;; i=1.3 (6.54)

This simple criteria can also be used to sort the solutions of the direct problem.

6.6 Solving model 9 of the Argos structure

6.6.1 The direct problem

Model 9 is given by eq. 3.26 and table 3.16. The solution of the direct problem supplies
for a set of given joint angles no, one or several sets of Euler angles
o, 0,,0, = 9,,0,,0;. Expanding the first of the equations given in 3.26 together
with table 3.16 leads again to the same equation as for the nominal model (eq. 6.40). Its
solution is therefore given by eq. 6.43 with:

9, = o (6.55)

where joint angle and encoder offset are again collected in a single variable:
O =0, + 00, i=1..3 (6.56)

The remaining two equation of 3.26 together with table 3.16 can thus be rewritten as:
u” R, =07 - Rot3(x,0,,)- Ror3(y,9,)- Rot3(x,9,)-¥, = 0 i=2.3 (6.57)

where the entire first rotation matrix is known. Therefore, the following parameter
substitution is introduced:

T

t7 =07 Rot3(x,0,) = (Rot3(—x, 0y, ) - ;) i=2..3 (6.58)

]

Substitution into eq. 6.57 yields:
c(8,) 0 s(8,)|[1 © 0 v
{totte}l 0 1 0 [0 () ~s(;)[<v
=5(8,) 0 o(9,)] |0 s(D;) (D) ] (v

Z

0 1=2..3 (6.59)

Using the same procedure as in eq. 6.28 the vectors containing the unknown Euler
angles are extracted:
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0 ][0 o v (cs,)

{c(t‘}z),s(ﬁz),l}- -t, 0 t,||vy -v, O[4{s(9;);=0 1=2.3
0 # Of|v, v, O 1

which can be rewritten using the Sw-function defined in annex B.2:
Q.7 -Sw(-y.t) -Sw(x,¥,)- G, =0 i=2..3 (6.60)

Comparing these two equations with the two input equations defining the "general
orientation problem" (eq. 6.7) shows that they are identical with the coefficient
matrices given by:

W = Sw(—y,Rot3(-x,0,,)- 0,) Sw(x,v,)
- (6.61)
K=

Sw(—y, Rot3(-x,0, ) . ﬁ3) . Sw(x, 73)

The direct problem of model 9 can now be solved by substituting eq. 6.61 into eq. 6.7.
Thereby the solution is given by eq. 6.18, having eight solutions at most.

6.6.2 The inverse problem

For a set of given Euler angles the solution of the inverse problem supplies no, one or
several sets of joint angles ¥,,9,,9; = ;,&,,a;. As for the nominal model the
system of eqs. 3.26 together with table 3.16 is decoupled in the unknown joint angles

and can therefore be rewritten as:

a;, cos(a; +00,)+b, sin(e; +00,)=0 i=1..3 (6.62)
where the factors are together with table 3.16 given by:
00
{a,b}=V"-R"-R.-|1 0 (6.63)
01

The solution of the inverse problem of model 9 is given by eq. 6.54 and the factors

given in eq. 6.63.
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6.7 Solving model 27 of the Argos structure

6.7.1 Introduction

Model 27 of the Argos structure is given in eq. 3.22. For a given set of joint angles the
solution of the direct problem provides no, one or several sets of world coordinates
o,,0,,0, = x,,2,9,,9,,9,;, whereas the solution of the inverse problem supplies no,
one or several sets of joint angles and position coordinates 99,9, —
o,,Q,,0,,x,y,z for a given end-effector orientation. Comparing these definitions with
the definitions for model 54 of the Delta robot (paragraph 6.4.1) shows that model 27 of
the Argos structure is the opposite of model 54 of the Delta robot. Therefore, all
propositions made in section 6.4 can be adapted to model 27 of the Argos and the
reader is referred to that section. In particular, this concerns the propositions made for
the two algorithms. Therefore, only some additional indications on the adaptation of
the algorithms given in section 6.4 are presented in this section.

6.7.2 The direct problem

The direct problem of model 27 lies between the "general pose problem" (paragraph
6.2.4) and the "general orientation problem" (paragraph 6.2.3). Geometrically, it
corresponds to fit a triangle to three circles in space. Nanua [90] has shown how such a
problem can be reduced to a univariate polynomial of 16th order. Due to the high
degree of the polynomial the solution is not suitable for a real-time application.

The Newton-Raphson procedure, the first algorithm proposed in section 6.4, can be
adapted to the present problem without difficulties by taking the solution of the nominal
model of the Argos structure given in paragraph 6.5.1 as an initial guess for the
orientation.

The second algorithm might not be well suited for this problem for the following
reasons: The first set of equations G1 given in eq. 3.22 represents a "general orientation
problem" (paragraph 6.2.3) for a given position of the virtual rotation center. In order to
reduce the "general orientation problem" to a univariate polynomial, the parameteri-
zation was chosen dependent on the position of the virtual rotation center. Therefore,
the parameterization must be adapted at each iteration step because of the small position
changes of the virtual rotation center. This makes the algorithms slow and unsuitable. It
is better to solve the first set G1 with the Newton-Raphson procedure for the orientation
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angles using the direct solution of the nominal model of the Argos structure as an initial
guess. These Euler angles can be passed on to the second set G2 given in eq. 3.22,
which in that case represents a "general position problem" (paragraph 6.2.2). Due to the
minor difficulties of the "general position problem" the linearization for small
displacement of the virtual rotation center is not necessary.

6.7.3 The inverse problem

The inverse problem is paired coupled in the unknown motor angles. Furthermore, all
six equations are coupled in the three unknown coordinates of the virtual rotation
center. It is expected that the non-linearity is below the one of the inverse problem of
model 54 because of less trigonometric functions being involved.

The Newton-Raphson procedure may work without any difficulties for this problem if
the inverse problem of the nominal model given in paragraph 6.5.2 is used as an initial

guess.

The second algorithm proposed in section 6.4 can also be adapted to this problem by
solving the first set G1 given in 3.22 for the joint angles, if the position of the virtual
rotation center is considered to be known. It remains to solve the second set G2 for the
resulting position, which can either be done linearly of not.

6.7.4 Conclusion

The solution of model 27 of the Argos structure represents the opposite to the solution
of model 54 of the Delta robot.
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6.8 Conclusion

In this chapter the direct and inverse problem of the different calibration models for the
Delta and Argos structure were solved. Model 24 of the Delta robot, model 9 and the
nominal model of Argos structure were solved by reduction to univariate polynomials.
The solutions for the nominal model of the Delta robot are not given in here and can be
found elsewhere [Clavel 91]. The solutions can also be derived by substituting the
parameter given in table 3.12 into the solutions of model 24 given by eq. 6.26 and eq.
6.30. Two numerical procedures were proposed for model 54 and model 27.
Examination of the solutions of these two models has shown that for calibration models
the inverse problem is not always easier to solve than the direct problem. The difficulty
of solving the inverse problem of a calibrated model may arise from two different
reasons:

For the nominal model solving the inverse problem ends up in finding the inverse
solution of a simple serial joint-link train, which is generally easy to solve. An example
is the SPS joint-link train of a Stewart Platform (paragraph 3.3.2). For a calibration
model the assumption of perfect passive S-joints might be dropped, which leads for the
Stewart platform to the non-trivial problem of finding the inverse solution for a general
2RP3R joint-link train [Wang 92].

The second reason occurs only for parallel robots having less than 6 degrees of
freedom. In this case the inverse problem of the calibrated model is coupled in the
variables which cannot be controlled at the end-effector. An example is model 54,
which is coupled in the variable of the unknown orientation of the end-effector.

There are also calibration models where both of the above mentioned difficulties arise
when trying to solve the inverse problem. An example is the calibration model of the
Delta robot with 138 parameters taking into account all possible deviations of the
passive joints(paragraph 3.4.1). The first difficulty consists of finding a solution for the
inverse problem of a general 6R joint-link train, which is a difficult task [LeeH 91].
Second, the closure equations are coupled in the three variables of the unknown
orientation of the end-effector .

For real-time application the calculation time of the proposed solutions may be of
importance as listed in table 6.6. The evaluations were made on a Motorola 68040
processor with mathematical coprocessor, whereas the programming was done in
Mathematica™ [Maeder 91, Wolfram 91)]. For evaluations of the models of the Delta
robot a set of experimentally identified parameters was taken (chapter 5).
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model algorithm DP Ar of DP P §
ST | {{um], farc- | IS
seconds}}
Delta 54 polynomial 14000 - 624 |
Newton-Raphson with updating of | 4.6 {0,0} 76 | 6.4.1

the Jacobian: Initial guess of model
24, machine precision

as above, but without updating the | 3.4 {0,0} -

Jacobian

as above, but initial guess always | 2.9 {0,0} -

in the center of the workspace
{0,0,200,0,0,0}

as above, but breaking after five 2.7 {0.02,0.3} - !

steps

Cascaded iterative, breaking after 2.0 {0.1,1.3} 19 | 64.2
one and a half steps -
6.4.4

Cascaded according to eq. 6.33 1.1 {483,2.9} 1.1 ]164.1

Delta 24 polynomial 0.65 | {483,1070} | 0.53 6.3
Argos 9 polynomial 33 - 0.17 | 6.6
Argos closed form 0.05 - 008 | 6.5

nominal

Table 6.6: Calculation time of the different solutions of the direct (DP) and inverse
problems (IP). Ar contains the errors in position and orientation with
respect to the numerical solution with machine precision.

The calculation times given in table 6.6 are strongly dependent on the hardware as well
as on the programming environment. A final judgment of the calculation speed can only
be gained by an implementation into a commercially available controller. However,
some qualitative tendencies in table 6.6 can still be observed such as the fact that fast
solvable models are models, which can be reduced to a univariate small-order
polynomial. Such kind of reduced models are up to fourth order analytically solvable.
The cascaded iterative algorithm for model 54 given in table 6.6 is based on the
evaluation of two times a second order polynomial and once a linear system, which

may explain its short evaluation time.



7. Conclusion

7.1 Summary

In this work it was attempted to provide systematic approach as a base for future work
on accuracy improvement of parallel robots.

To represent the field of parallel robots, two structures, a purely translative (Delta) and
a purely rotative were chosen. The rotative mechanism is a novel design of a spherical
parallel wrist called Argos.

Detailed studies of these two examples led to some more generally applicable tools for
the calibration of parallel robots:

- A formula allowing to calculate the number of non-redundant parameters for a
complete calibration model.

- A systematic parameterization using either Denavit-Hartenberg or Hayati parameters.

- Measurement devices as well as special set-ups require no external measurement
device.

- Use of implicit instead of forward calibration and semiparametric calibration if no
quality control of the mechanical parts is foreseen.

- Use of Levenberg-Marquardt or Gauss-Newton based on singular value decomposi-
tion supplies enough robustness.

- Implementation issue showed a similar pattern for both of the examples, which
allowed to propose fast algorithms to solve the direct and inverse problem of the
calibrated models.

In addition to all these aspects related to calibration, propositions for the design of
accurate parallel robots have been given and tested for the two chosen examples.

The main contribution of this thesis consists in the experimental verification of the
tools proposed for accuracy improvement of the two parallel structures Delta and
Argos, showing an improvement of up to a factor of 10 to be possible.
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7.2 Future work

This work may serve as a base for adapting a parallel robot to a high precision task.
Once the task is known as for example to built with a Delta topology a machine tool,
the appropriate concepts and models can be chosen, according to the accuracy required.

Suggestions for future works:

Optimization of measurement points taken for calibration, a task which is related to

the question of observability and sensitivity of parameters.
Investigations on the global validity of an identified parameter set.
Standardization of criteria to characterize the quality (goodness) of fit.

Design of an accurate, contactless measurement devices, in particular for all three
degrees of freedom in orientation [VDI 91].

Development of a real-time sensor for end-effector feedback of the Delta and other
robots.

Investigation of errors generated by the transmission between the motor and first

revolving joint as well as error generated by a varying payload.

Extension of this work to dynamic aspects. The goal is to determinate the inertial
properties of the various links, which is defined as level 3 calibration [Everett 87,
Roth 87].

Calibration of an industrial version of the Delta robot using the proposed tools.

I hope that this work will contribute to increase the number of industrial applications of
the fascinating parallel structures.



Annex A Additional

figures

A.1 Generic derivation of spherical mechanisms

SCARA type structures

Pantograph type structures

Serial with two degrees of freedom (DoF)

A /./“\

/
NN\
Ef; N\

[Stackhouse 79]

As for a SCARA robot two additional
DoF can be added

Addition of three DoF in the parallelogram
avoids static overdetermination.

With an additional rod parallel to the upper
horizontal rod -> "Reticulator” [Rosheim 89]

Parallel with two

degrees of freedom (DoF)

spherical SR-loop named -> "KITE"
[Artobolevski 75]
Coaxial driving axes [Querfelli 94]

Novel design -> "PantoScope" [Vischer 95]
Addition of a torsional DoF in one of two
upper bars avoids static overdetermination
(plus 2x3 DoF for the parallelograms)
Application as force feedback manipulator
[Baumann 96]

With additional rods parallel to the upper
horizontal ones -> "CMS joint" [Hamlin 94)

Parallel with three

degrees of freedom (DoF)

-> "Agile eye" [Gosselin 92]
Coaxial driving axes [Asada 85]

Novel design -> "ARGOS" [Vischer 95]

Aplanar driving axes [Bubendorf 96]
With 6 DoF -> "HapticMaster'" [Iwata 95]

Coplanar driving axes [Gosselin 88]

Table A.1: Synthesis of spherical me

chanisms
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A.2 Solutions of the general pose problem

Fig. A.2: Solutions of the general pose problem for a Delta robot for the same set of
joint angles. The number of solutions (real roots of the 40th order
polynomial) depends on the joint angles and varies between 8 and 16.
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Annex B Vector and matrix functions

In this work, the following vector and matrix functions were used: Rot3, Rot4, Trans4,
Sw, Sh. The first three functions are commonly used in robotics and are described in
Paul [81] or Craig [89]. The numbers 3 and 4 indicate the rank of the resulting matrix
and thus whether it is a homogeneous matrix or not. Here the definition of the Rot3, Sw
and Sh-functions are given. The latter two functions Sw and Sh were introduced in
chapter 6. A software package for Mathematica™ containing these functions is
available from the author.

B.1 The Rot3 (Rotate)-function

An unit-vector kK and an angle 6 are the input arguments of the Rot3-function. The
output is a rotation matrix describing a rotation about the axis k by the angle 6. The
formula is sometimes referred to as "Rodriques’ formula":
kK vers(B)y+cos(6) k. k vers(6)—ksin(6) k. k, vers(6)+k sin(6)
Rot.%(i,@) kxkyvers(9)+kzsin(9) kk vers(6)+cos(6)  kk vers(6)—k,sin(6)| (B.1)
k. k vers(6)—ksin(6) k k vers(0)+ksin(6) kk, vers(6)+cos(6)

with vers(8) =1 —cos(0)

Example (Rotation about the x-axis):

1 1 0 0
Rot3(X,0)= Rot3[40:,0 |=|0 cos(8) -—sin(B)
0 0 sin(@) cos(8)

In the main text, the notation of rotations about the principal axes X,¥,Z is simplified to
Rot3(x,0),Rot3(y,0) and Rot3(z,0) not each time indicating that the first argument is
a vector, which is already clear from the definition.

B.2 The Sw (Swap)-function

The Sw(Swap)-function is closely related to the Rot3-function. It is basically a
swapping procedure between the angle of a rotation matrix and a postmultiplied vector.
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cos(0)
Rot3(k, 6) V= SW(E,V)- sin(6) ¢ = Sw(k, v)-8 (B.2)
1

The input argument is a unit rotation axis k and a postmultiplied vector V. Output is a
3x3 matrix, which satisfies eq. B.2.

v, —k, (E : V) ky, =k, kx(§ . V)
swk,v)=|v,-k,(k-¥) kv, —kyv, k(k V) (B.3)
v,—k(k-¥) kyv,—kv, k(k-V)
Rotations about the principal axes X,¥,Z:
(cos(at)] v)) [o o ]
Rot3(+X,0) V= Sw(+X,V)-(sin(a) with  Sw| £X,{v, =y . 0
! v, | v, v, O
(cos(ar)] (v.]) [v, #v, ©
Rot3(1y,a) Vv = Sw(¥,V)-{ sin(at) with — Sw| £¥,qv, 1 |= 0 v,
. 1 J vZ J ..vZ ?V O =
cos(at) v, v, v, 0
Rot3(xZ,at)- V= Sw(£Z,V)-< sin(at) with  Sw|*Zv, ¢+ |=|v, ®v, 0
1 12 0 0 v,

1. Example (with the abbreviations: cos(at) = cot and sin(Q) = sQ ):

1 0 07f(v) [o
Rot3(X,0)-¥=|0 co —sO|-qv,t=|V,
0 sa ca v v

2. Example:
1 0 O
V' Rot3(x,a) ={v,.v,.v,} |0

0 so co

co

$sa s =Sw(X,V)-O

ca —so|={ca,s0,1}-] 0 v, -v,

v. 0 O

X

= (Rot3(%, )" -V)T = (Rot3(-X,a)-7)' = (Sw(-%,¥)- &) =& - Sw(-%,¥)

Further examples can be found in chapter 6.
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B.3 The Sh (Shrink)-function

The Sh (Shrink)-function is used to change the representation of a univariate

polynomial from a symmetrical vector / matrix / vector notation to an asymmetrical

vector / vector notation:

’PZn—Z‘
Gu G12 . Gln x™
{x"",..,x,l}- G:zl ’ . . x E{xz"‘z,..,...,x"",..,x,l}-j P
Gnl Gnn 1 Pl
P,

L (B.4)

4

where the new vector of factors P is the output of the Sh-function having the square

matrix G as input argument:

Gll (Pzn—2\
G, + G,
gu GIZ Gy, +l +
Sh .21 ={G, + + + G,={ P (B.S)
Gnl Gnn P]
L Gnn L PO

Applications of the Sh-function are given in paragraph 6.2.3.
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Annex C Non-linear least-squares estimation

In this annex methods for unconstrained non-linear least-squares estimation are
reviewed, based on the books of Schwarz [86], Fletcher [87], Press [89], [Mooring 91]
and [Schréer 93]. All methods intend to solve the following problem (cf. section 5.2):

Given are N non-linear error equations forming a residual vector:

f(p)=r (C.1)

Solve for the unknown n dimensional parameter vector minimizing the quadratic merit
function for N > n:

o(p)=t"-r=£(p) -T(P) (C2)
C.1 Newton's method

A necessary condition for a minimum of the merit function Q is that its gradient vector
(first order derivatives) with respect to p is zero:

v(0,p)=V(f" -£.5)=2+V(f",p) F=2+T" -F=0 (C.3)
where V is the Nabla-Operator allowing to write the gradient of Q as:
(30)
P gg
D 9=
V24 =10, ¢ (C.4)
p)) |92
9P, ]
and
EXEA
b fi b 3;1 3?2 3'1;"
22 Y2 22 =
v[£iP =9 {72 LR o, 3p,” "op, [=IeR €3)
P fu) \pa o y afN dfy
K apl apz ap, i

where the matrix J is called the identification Jacobian .
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At such a point a sufficient condition for a minimum is that the Hessian matrix (second
order derivatives) is positive definite [Mooring 91]:

V(V(0.p).p)=V(2+V(i".p)-1.5)
=2+(V(F",5)- V(£.5)+ V(V(F".5).5) f) (C.6)
=2+(J7-T+V(I") F) >0

where the Hessian matrix is defined by applying the Nabla-operator twice:
(90) ) [2e P2 F0 |

ap, | [ dp " opop,” opop,
9| |, 30 *Q 90

v W 8?2 K = aplaPZ ’ap22 ,“,apzap,, (€7
30| | ¥o g ¥
\ap’l; _aplapn’BPZapn ’“’apnz_

(C.8)

where the tensor H will be called the identification Hessian (or curvature matrix).

Eq. C.3 represents a nonlinear system of n equations coupled in the n unknowns p. For
numerical resolution a Newton-Raphson algorithm can be used which is based on a
local linearization for a set of known kinematic parameters P, :



162 Annex

0=v(0.p) = V(2.p)}, +V(V(2.B).B), -Bp, (C9)

Comparison of eq. C.9 with egs. C.3, C.6 and C.8 shows that this equation can also
be written as:

{7-1), =(3-3 8 1)

-Ap, 1 (C.10)

Py

P:

The system of n equations C.10 can be linearly solved for the n unknowns Ap, and
added to P, for the next iteration. The criteria to stop is fulfilled if the merit function Q
doesn't change any further. Newton's method to solve nonlinear least-squares problems

is therefore summarized by:

=r = _ = = ET - JR— B
{778, =(777+H -f)a 3P, f L Cl
Pe =Py +A_pk J__) C4
(F-f) -(ff) <e—oend H-C3
Pt Pi+1 (C.11)

Newton's method converges quadraticaly to its fixed point [Schréer 93]. The crucial
point of Newton's method is the computationally intensive calculation of the
identification Hessian containing second order derivatives of the calibration model.
Taking for example model 24 of the Delta robot, 0.5x24x25 = 300 partial derivatives
must be calculated. Taking further S0 measurement points, where the full position is
known leads to 300x3x50 = 45'000 different elements in this tensor. For model 54 with
full pose measurement there would even be 445'500 different elements. According to
Press [89] including the identification Hessian can even have a destabilizing effect if
the model fits badly or if the measurement is contaminated by outlier points. Dropping
the identification Hessian in Newton's method, eq. C.11 merge to Gauss-Newton

method discussed in the next section.

1 To transpose a tensor of the dimension Nx3x3 means to rotate the dimensions once clockwise

_>ﬁTem3x3xN
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C.2 Gauss-Newton method

Gauss-Newton method is based on a local linearization of the non-linear error
equations given in eq. C.1 for a known set of kinematic parameters P, [Schwarz 86]:

£, = £,(B),, + V(£,(P)B) A =p, FLN (C12)
or in vector notation:

-f‘(ﬁ) = f‘(ﬁ)l,-,k + V(f(ﬁ)’ﬁ)l—pk 'Ek = fl,—,‘ + TIBI: 'Zl—’k =p (C.13)

Eq. C.13 represents an overdetermined, linear system of equations (N>n). The residuals
p differs from the one given in C.1 (T). Its solution is a problem of optimization.
Again, a merit function, which is the square of the residual vector will be introduced:

05 9=t <21 1] 3301

P

-Ap, (C.14)

P

The necessary condition for a minimum of the quadratic merit function Q is that its
gradient with respect to Ap, is zero:

Bp, + 5,7 {77-)

v(0.3p)=((F" B, +2*(7" ),

P

_ 'H’k’z—ﬁk)

Pi

=2*(J"-§)

-Ap, (C.15)
Pr

=2*(T’-f)

[

At such a point the sufficient condition for a minimum is that the Hessian matrix is
positive semidefinite [Mooring 91]:

v(v(0.3p,).3p,)= V(Z «(37f)

+2+(37-3)

. _ 'ZEpA_pk)
Py

P

(C.16)

=2*(J"-J)_ 20

[

This claim is always satisfied if the identification Jacobian J has full rank [Schwarz
86, Mooring 91] since in this case the inverse of the matrix (37 f) is the estimated
positive semidefinite covariance matrix of the fitted parameters p, [Press 89]. Eq. C.15
represents a linear, determined system with respect to the unknown vector E)k. The n
equations are called normal equations. The Gauss-Newton method can now be written
as:
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_=T.— ==T-= .—-
R -
§k+1=l_)k+ZI_’k j (;4
-C.
(f"-f‘)l_ -(f"-f) <e->end
Pi ﬁk&l
(C.17)

Gauss-Newton method converges linearly to its fixed point [Schréer 93]. Comparison
with Newton's method given in eq. C.11 shows that the identification Hessian as
defined in eq. C.8 doesn't appear in the Gauss-Newton method: Gauss-Newton method
is based on a linear system of equation (eq. C.14) whereas Newton's method is based on
a quadratic system of equations!. The identification Hessian reflects the nonlinearity of
the calibration model for the least-squares estimation. Thus, the less nonlinear the
calibration model is, the more identical the two methods become. Driels has shown by
simulations that the identification of kinematic parameters of a serial robot is weakly
nonlinear [Schréer 93, Schroer 93a]. Thus, the Gauss-Newton method may be a good
choice for the identification of kinematic parameters of parallel robots.

The system of egs. C.17 for Ap, could for examples be solved by premultiplying from
the left with the inverse of the square matrix (jT : j) :

{3 7)

(3

-fl_ =4p, (C.18)

Pe

The matrix (jr T)_ -J7 is called the pseudoinverse. It solves overdetermined linear
systems of equations by minimizing of the square of the residuals.

1 Instead of deriving Newton's method as shown in section C.1, the error equations (eg. C.1) can directly

be approximated by a quadratic function given by a Taylor series expansion:

_ -m]

P

Fof +7 .z"pk+%(§)kf.ﬁ

Py

P

3.4
Substitution into the merit function (eq. C.2) and dropping all terms of magnitude A" will lead to
Newton's method (C.11) after calculation of the gradient, too. This shows a further common feature of
Newton's and Gauss-Newton method: The merit functions of both methods are quadratic in the unknown

vector Ap, [Fletcher 87). See eq. C.14
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Eq. C.18 shows a major drawback of Gauss-Newton method: If the square matrix
(jr . =-J-) suffers from rank deficiency, it is no more invertable [Golub 83]. This may
happen if several measurements are performed for little varying robot configurations
(row dependency in the identification Jacobian) or if the calibration model contains
dependent variables (column dependency in the identification Jacobian). Not only
exactly dependent rows or columns causes the Gauss-Newton method to fail, also very
closely related rows or columns disturb with an ill-conditioned identification Jacobian
the Gauss-Newton method reasonable. An example is given by the nearly parallel b,
and ﬁ,. vectors in model 54, which leads to an almost column dependency in the
identification Jacobian.

To overcome the problem of an identification Jacobian, which is singular or
numerically close to be singular, many propositions can be found in literature. Two
different approaches will be reviewed in the next two sections. One is called singular
value decomposition and allows to "invert” singular matrices in a least square sense
whereas the second one, the Levenberg-Marquardt method is a modification of Gauss-
Newton method itself.

C.3 Singular Value Decomposition (SVD)

According to [Golub 83] or Press [89], any N x n matrix J can always be written as:

J| =TU-diagw,) V" (C.19)

P

where U isanNxn column-orthogonal matrix, diag(w;) an n x n diagonal matrix
with positive or zero elements w, called the singular values of the matrix J, and

V annxrn orthogonal matrix.

The singular values are the square roots of the eigenvalues of the n x n matrix (j’ j)
The ratio from the largest to the smallest singular value is the condition number, which
shows how close J is to be singular. A matrix J with an infinite condition number is
singular whereas a matrix -—j with a large condition number is called ill-conditioned.

K(T) = :m (C.20)

Thus, SVD provides information about the quality of a matrix J. With the help of the
condition number it can be checked, if the identification Jacobian contains dependent

parameters or if a bad located set of measurement configurations was taken.
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The main advantage of SVD lies in its ability to handle any kind of linear system in a
least-squares senses regardless of being ill-conditioned or not. SVD is directly applied
to the linear, overdetermined system of error equations (eq. C.13) given as starting
point for the Gauss-Newton method:

p= flfu + jlm : _A—Pk

where the solution Ap, which minimizes the Euclidean norm of the residual vector
P is given by the inversion of eq. C.19!:

Ap, = -V - diag(-)- U f]_ (C.21)
w; P

If the identification Jacobian is ill-conditioned small, singular values will perturb eq.
C.21. According to Press [89] the inverse of these small singular values have to be
replaced by zero in order to obtain a suitable solution for a linear least square problem
by eq. C.21.

Using Gauss-Newton method based on singular value decomposition can now be

summarized as:

TI_ =ﬁ~diag(w,.)§r
P
_ = 1 =r= . 1 _
APF—V'dlag(;i)’U .fl_m Jif w,<g, then ;i—ao f-Cl
Pin=P: +—AT’k J-C4
(), (9] <e,oena
Pt [2%) (C.22)

Algorithms for SVD of the identification Jacobian can be found in MatLab™ (based on
LINPACK) or Mathematica™ [Dongarra 79, Golub 83, Moler 92, Wolfram 91].
Iterative algorithms working only on numerical matrices are used. However, using SVD
for linear least square problems corresponds to suppressing of symptoms of a
calibration model containing dependent parameters or a badly chosen set of
measurement configurations. If possible, it' s better to fight the source of these
symptoms. This was the motivation to derive a formula allowing the calculation of the
number of independent kinematic parameters for a complete calibration model (eq. 3.3).

1 8p,=-J"§], =—(ﬁ~diag(w,.)-$’)-l-f‘|a =-ﬁ’)'I (diagw,))” (f)'EL =—$-diag($)-ﬁ’-ﬂ

P
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C.4 Levenberg-Marquardt method

The Levenberg-Marquardt (LM) method modifies the normal equations given in eq.
C.17 to overcome problems related to singularities of the identification Jacobian
[Mooring 91]:

—(jr-f)l_ =(jrj+kk TX_ -Ap, ,with X,>0
e ) f-cCi1
P =P, 4D, — .
J->C4
(f"-f)l_ —(f’-f)i_ <e—end -
Pe Prst (C23)

where I is annxn identity matrix and A, an adjustable positive scalar factor.

The right-hand side of eq. C.23 is always invertable, independent of the rank of 373
[Schwarz 86]. A further advantage of the LM-method is, that it can handle also strong
nonlinear systems. If the initial guess of parameters for Newton's or Gauss-Newton
method is far away from the optimal set for the minimum of the nonlinear merit
function, quadratic approximations of this function may be of poor quality. In other
words, the minimum of the quadratic merit function found by either of the two methods
lies far away from the minimum of the nonlinear merit function. In such a situation it
would be preferable to do a small step in the steepest descent direction of the nonlinear
merit function in the point P, in order to get closer to the searched minimum [Press 89].
The steepest descent direction lays in the opposite direction of the gradient vector of the

nonlinear merit function Q (eq. C.3). The steepest descent method is given by:

P =P~ %(ir f‘)

_Lwith 4, >0 (C.24)
Py

where A, has to be adjusted in such a way that the minimum won't be passed by a
too large step width.

Eq. C.24 allows to further interpret the LM-method. When A, is very large, the right
hand side of eq. C.23 1s forced into a diagonally dominated matrix and merges into eq.
C.24. On the other hand, as A, approaches zero, eq. C.23 merges into Gauss-Newton
method given by eq. C.17. It remains to adjust A, in such a way that far from the
searched minimum the steepest decent method in the LM-method becomes dominant
and the closer the updated parameter set p, gets to the searched minimum the more the
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LM-method is forced into Gauss-Newton method in order to have a quadratic

convergence ratel.

According to Marquardt A, is adjusted in such a way that an iteration step is only
executed while decreasing at the same time A,, if the merit function gets smaller (->
Gauss-Newton). Otherwise, A, is increased (-> Steepest decent) without updating the
parameter set. For further information the reader is referred to Press [89] and paragraph

5.3.3.

! Actually, the Gauss-Newton method converges linearly, but the closer it gets to the searched minimum,

the more it is the same as Newton's method, which has a quadratic convergence rate.
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Annex D Solving non-linear systems of equations

In this annex the method of resultants reducing non-linear systems of equations o a
univariate polynomial is reviewed. This method doesn't reflect the state of the art in
mathematics, but it is a transparent method, which avoids non-reducible roots solving
polynomial systems of equations. The method is also known as Sylvester's or Bezout's
method. For more detailed information the reader is refereed to [Dolster 83]. Resultants
are an extension of determinants, which allow to check whether two polynomials have a
common root.

D.1 Polynomial systems

The resultant of two polynomials (P1,P2) is defined by the multiplication of all possible
combinations of differences of their roots a,,B;:

Pi(x)=Yax"",  P2(x)=Y bx"’ (D.1)
i=0 j=0

with their resultant:

Res(PLP2.x)=agh; [ [ J(e:-B)) (D.2)

=1 j=1

D.1.1 Applying resultants to check for common roots

According to the definition given in eq. D.2 the resultant will vanish if two polynomial

have a common root.

Given are two polynomials:
PL: ¥’-x*+2=0

(D.3)
P2 x*+2x+1=0

To calculate the resultant of the two polynomials the method of Sylvester will be used,
who showed that the resultant can be calculated as the determinant of the following 5x5
matrix:
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Res(PLP2,x)= (D.4)

O O = O =
[a—y

N = O QO N

- O O NN O

For the chosen example explicit calculation of D.4 yields in fact to zero because the

polynomials have a common root at-1.

D.1.2 Application of determinants for solving polynomial systems

Given is a polynomial system of equations coupled in three variables x,y,z:
-xz*=5x-y-z=0
22 —2xz+2yz—16x—-4y—4z-11=0
x2+2x2+6=0 (D.5)

D.5 is linear in the variables x and y and can therefore be rearranged as:

(~z2-5) -1 -z X
(2z-16) (2z-4) (*-4z-11)|{y =A.X=0 (D.6)
(+22) 0 6 1

In order to solve D.6 for x and y overdetermined system of equations, it has to be
guarantied that A becomes linearly dependent for a valid z. The condition to satisfy is
|K‘ =0:

]X| =24 —102°+3572 =507 +24 =0 : (D.7)

Solving this univariate fourth order polynomial for z and back-substituting z into D.6
leads to the following sets of solutions:

{ryah, ={-2 1 11{-34. 1%, 2}.{-%, 134, 3}{- 1. %. 4} @3

D.1.3 Application of resultants for solving polynomial systems

Ignoring that D.5 is linear in x and y, D.5 could also be written as polynomials in z:
G: (-x) ¥ - z—( Sx+y )=0
G,: 2 +(2x+2y-4) z—(16x+4y+11)=0 (D.9)
G: (x) 22+( 2x ) z+( 6 )=0
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The necessary condition for the two polynomials G, and G, to have a common root in z
is that their resultant (eq. D.2) vanishes. Applying D.4 leads to:

-x -1 —(5x+y) 0
0 —x -1 —(5x+y)
Res(G,,G,,2) = =0 (D.
GrGrd= 1 (axr2y-4) -l6x-dy-11 0 (D.10)
0 1 (-2x+2y~4) -16x—-4y-11
Expanding D.10 leads to a bivariate polynomial H, in x and y:
H: (4x)y® +(28x* — 1)y’ +(46x+120x +92x° )y +
(D.11)

(276x* +560x +260x* - 40x-11)=0

The resultants of the remaining two possible combinations of the three polynomials in
D.9 can be calculated accordingly:

H,: Res(G,,G,;,2)=0 and  H;: Res(G,,G;,2)=0 (D.12)

The H;-polynomials build a set of three different bivariate polynomials in x and y. To
eliminate a variable, for example y, the method of the resultants is applied again
resulting in a new set of three univariate polynomials K, in x :

K,: Res(H,,H,,y)=0
K,: Res(H,,H;,y)=0
K,: Res(H,,H,,y)=0 (D.13)

The K;-polynomials being cumbersome are not shown explicitly. They are of the order
of 14, 14 and 12. The greatest common divisor of the K,-polynomials is the searched
univariate polynomial P:

P: 3x5(2+ x)*(3+4x)*(2+5x)x(1+4x)=0 (D.14)

The solution x=0 is incompatible with polynomial G; and has therefore to be dropped.
The remaining four solutions are identical to the ones given in eq. D.8.

The first solution of the example chosen (eq. D.5) based on determinants is much more
efficient than the second approach using resultants. The first solution was only possible
because x and y are linear in D.5. The example was chosen this way to demonstrate the
relationship between resultants and determinants. If none of the variables appears
linearly in the polynomials, only the second method can be used. Starting the resultant
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method with the variable of the lowest order is recommended. Since computational

complexity is reduced and will prevent to oversee linear variables.

The system of equations D.5 can also be solved without the use of determinants or
resultants by solving the first eq. for x, substituting the solution into the third equation
and solving that one for y. Substitution of x and y into the second equation of D.5 yields
the same univariate polynomial as in D.7. Again this is only possible because D.5 is
linear in x and y. Equal treatment of a general polynomial system of equations will
introduce roots which make the reduction to a univariate polynomial impossible. This
can be verified by trying to solve D.5 in a reverse order: Extract z of equation one and
substitute this result into equation three in order to solve this eq. for x and so on ... and

you get trapped.

Application of resultants to solve polynomial systems of equations is not the most
powerful tool in mathematics. Having more than two polynomials and applying the
resultant method will generally lead to a univariate polynomial of a higher degree than
is the number of solutions of the original system of polynomials. A method which
supplies directly a univariate polynomial of minimal order is based on the use of
Grobner bases, for which the reader is referred to Adams [94]. For a comparison and
overview of different methods see Raghavan [95].

D.2 Transcendental systems

This annex gives an example for the reduction of a system of equations including
transcendental functions to a univariate equation. Two different methods are discussed
and illustrated by an example. Given are two equations coupled in the unknowns «,f3:

a(B) b(B)} {cos(oc)}= {kl(B)} D
L(B) 4)) \sin ~ |(8) O
where the factors a,b,¢,d,k are any kind of function of § such as for example:

a(B)=B* +2B+1, b(B)=3, c(B)=-p,

. (D.16)
d(B)=3B-5, k(B)=4B, k(B)=p"+2p

D.2.1 Use of the trigonometric identity

Firstly, D.15 is solved linearly for cos(c) and sin(a):
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‘k, bl a k
d d—kb : -
cos(@) = ]2 o= k“zd_];:c , sin(a)= 2 kg = k;:;—]l?cc (D.17)
c d‘ c d|

Substitution of this result into the trigonometric identity cos’(0.)+sin?(a) =1 leads to:
(kd - kb)’ + (kya — ke)* = (ad - be)’ (D.18)
which contains only the unknown f3.

As a numerical example the factors given in D.16 are substituted into D.18. This yields:
4% +16B7 +168pB° — 508* — 2688 + 544> + 608 -25=0 (D.19)

which is a univariate polynomial in § of the 8th order.

D.2.2 Use of resultants

A half tangent substitution is performed at first in order to convert the transcendental
equations given by D.15 into polynomials:

o 1-£ 2t
t=tan| — |, cos(a)=—, sin(a)=—
2 1+t 1+1¢ (D.20)
and thus:
P: +a) t*=2b t+(k~a)=0
 (h+a) (k- Do

P,: (ky+c) #-2d t+(k,—c)=0

The condition for the two polynomials P, to have a common root in t is their vanishing
resultant. Applying D.3 leads to:
(k,+a) -2b (k-a) O
0 k -2b -
Res(P,, P.t) = (ks +a) (b-a)_q
(ky+c) -2d (k-c) 0

0 (+c) -2d (k-c) (D.22)

Expansion leads to the same result as already found in D.18. Both methods are quite
easy to handle, however the second method may be more generally applied.
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